OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

ESX-1 dependent impairment of autophagic flux byMycobacterium tuberculosisin human dendritic cells
Alessandra Romagnoli, Marilena P. Etna, Elena Giacomini, et al.
Autophagy (2012) Vol. 8, Iss. 9, pp. 1357-1370
Open Access | Times Cited: 254

Showing 26-50 of 254 citing articles:

A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells
Elizabeth M. Selleck, Robert C. Orchard, Kara G. Lassen, et al.
mBio (2015) Vol. 6, Iss. 5
Open Access | Times Cited: 139

Autophagy: A new strategy for host-directed therapy of tuberculosis
Seungwha Paik, Jin Kyung Kim, Chaeuk Chung, et al.
Virulence (2018) Vol. 10, Iss. 1, pp. 448-459
Open Access | Times Cited: 139

SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions
Tae Sung Kim, Yeung Bae Jin, Yi Sak Kim, et al.
Autophagy (2019) Vol. 15, Iss. 8, pp. 1356-1375
Open Access | Times Cited: 139

Roles of Autophagy in Elimination of Intracellular Bacterial Pathogens
Eun‐Kyeong Jo, Jae‐Min Yuk, Dong–Min Shin, et al.
Frontiers in Immunology (2013) Vol. 4
Open Access | Times Cited: 137

Immunologic manifestations of autophagy
Vojo Deretić, Tomonori Kimura, Graham S. Timmins, et al.
Journal of Clinical Investigation (2015) Vol. 125, Iss. 1, pp. 75-84
Open Access | Times Cited: 137

ESX-1-induced apoptosis is involved in cell-to-cell spread ofMycobacterium tuberculosis
Nacho Aguiló, Henar Alonso, Santiago Uranga, et al.
Cellular Microbiology (2013) Vol. 15, Iss. 12, pp. 1994-2005
Open Access | Times Cited: 136

Listeriaphospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures
Ivan Tattoli, Matthew T. Sorbara, Chloe Yang, et al.
The EMBO Journal (2013) Vol. 32, Iss. 23, pp. 3066-3078
Open Access | Times Cited: 134

Mycobacterium tuberculosis: An Adaptable Pathogen Associated With Multiple Human Diseases
Qiyao Chai, Yong Zhang, Cui Hua Liu
Frontiers in Cellular and Infection Microbiology (2018) Vol. 8
Open Access | Times Cited: 134

The innate immune response in human tuberculosis
Thomas R. Lerner, Sophie Borel, Maximiliano G. Gutiérrez
Cellular Microbiology (2015) Vol. 17, Iss. 9, pp. 1277-1285
Open Access | Times Cited: 133

Innate Immune Responses to Tuberculosis
Jeffrey S. Schorey, Larry S. Schlesinger
Microbiology Spectrum (2016) Vol. 4, Iss. 6
Closed Access | Times Cited: 118

Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells
Marilena P. Etna, Alessandro Sinigaglia, Angela Grassi, et al.
PLoS Pathogens (2018) Vol. 14, Iss. 1, pp. e1006790-e1006790
Open Access | Times Cited: 114

Mycobacterium tuberculosis Inhibits RAB7 Recruitment to Selectively Modulate Autophagy Flux in Macrophages
Pallavi Chandra, Swapnil Ghanwat, Sumit K. Matta, et al.
Scientific Reports (2015) Vol. 5, Iss. 1
Open Access | Times Cited: 113

Strategies Used by Bacteria to Grow in Macrophages
Gabriel Mitchell, Chen Chen, Daniel A. Portnoy
Microbiology Spectrum (2016) Vol. 4, Iss. 3
Open Access | Times Cited: 109

Cell death and autophagy in tuberculosis
Andrew Moraco, Hardy Kornfeld
Seminars in Immunology (2014) Vol. 26, Iss. 6, pp. 497-511
Open Access | Times Cited: 105

Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic Immune Signaling and Improved TB Protection
Matthias I. Gröschel, Fadel Sayes, Sung Jae Shin, et al.
Cell Reports (2017) Vol. 18, Iss. 11, pp. 2752-2765
Open Access | Times Cited: 105

The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation
Katelyn E. Zulauf, Jonathan T. Sullivan, Miriam Braunstein
PLoS Pathogens (2018) Vol. 14, Iss. 4, pp. e1007011-e1007011
Open Access | Times Cited: 98

A Rab20-Dependent Membrane Trafficking Pathway Controls M. tuberculosis Replication by Regulating Phagosome Spaciousness and Integrity
Laura Schnettger, Angela Rodgers, Urška Repnik, et al.
Cell Host & Microbe (2017) Vol. 21, Iss. 5, pp. 619-628.e5
Open Access | Times Cited: 94

Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages
David Pires, Joana Pereira‐Marques, João Palma Neves Pombo, et al.
Scientific Reports (2016) Vol. 6, Iss. 1
Open Access | Times Cited: 93

Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis
Thomas R. Lerner, Cristiane de Souza Carvalho‐Wodarz, Urška Repnik, et al.
Journal of Clinical Investigation (2016) Vol. 126, Iss. 3, pp. 1093-1108
Open Access | Times Cited: 92

Natural and trained innate immunity against Mycobacterium tuberculosis
J. Ferluga, Hadida Yasmin, Mohammed N. Al‐Ahdal, et al.
Immunobiology (2020) Vol. 225, Iss. 3, pp. 151951-151951
Open Access | Times Cited: 91

Mycobacterial EST12 activates a RACK1–NLRP3–gasdermin D pyroptosis–IL-1β immune pathway
Zilu Qu, Jin Zhou, Yidan Zhou, et al.
Science Advances (2020) Vol. 6, Iss. 43
Open Access | Times Cited: 89

The Macrophage Response to Mycobacterium tuberculosis and Opportunities for Autophagy Inducing Nanomedicines for Tuberculosis Therapy
Retsepile E. Maphasa, Mervin Meyer, Admire Dube
Frontiers in Cellular and Infection Microbiology (2021) Vol. 10
Open Access | Times Cited: 69

M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival
Pupu Ge, Zehui Lei, Yang Yu, et al.
Autophagy (2021) Vol. 18, Iss. 3, pp. 576-594
Open Access | Times Cited: 63

Scroll to top