
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes
Suresh Kumar, Ruheena Javed, Michal Mudd, et al.
Cell (2021) Vol. 184, Iss. 24, pp. 5950-5969.e22
Open Access | Times Cited: 83
Suresh Kumar, Ruheena Javed, Michal Mudd, et al.
Cell (2021) Vol. 184, Iss. 24, pp. 5950-5969.e22
Open Access | Times Cited: 83
Showing 1-25 of 83 citing articles:
Structural biology of SARS-CoV-2: open the door for novel therapies
Weizhu Yan, Yanhui Zheng, Xiao‐Tao Zeng, et al.
Signal Transduction and Targeted Therapy (2022) Vol. 7, Iss. 1
Open Access | Times Cited: 249
Weizhu Yan, Yanhui Zheng, Xiao‐Tao Zeng, et al.
Signal Transduction and Targeted Therapy (2022) Vol. 7, Iss. 1
Open Access | Times Cited: 249
A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets
Yadi Zhou, Yuan Liu, Shagun Gupta, et al.
Nature Biotechnology (2022) Vol. 41, Iss. 1, pp. 128-139
Open Access | Times Cited: 128
Yadi Zhou, Yuan Liu, Shagun Gupta, et al.
Nature Biotechnology (2022) Vol. 41, Iss. 1, pp. 128-139
Open Access | Times Cited: 128
The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication
Peili Hou, Xuefeng Wang, Hongmei Wang, et al.
Autophagy (2022) Vol. 19, Iss. 2, pp. 551-569
Open Access | Times Cited: 81
Peili Hou, Xuefeng Wang, Hongmei Wang, et al.
Autophagy (2022) Vol. 19, Iss. 2, pp. 551-569
Open Access | Times Cited: 81
Molecular regulation of autophagosome formation
Yan Hu, Fulvio Reggiori
Biochemical Society Transactions (2022) Vol. 50, Iss. 1, pp. 55-69
Open Access | Times Cited: 70
Yan Hu, Fulvio Reggiori
Biochemical Society Transactions (2022) Vol. 50, Iss. 1, pp. 55-69
Open Access | Times Cited: 70
ER as master regulator of membrane trafficking and organelle function
Eva M. Wenzel, Liv Anker Elfmark, Harald Stenmark, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 10
Open Access | Times Cited: 70
Eva M. Wenzel, Liv Anker Elfmark, Harald Stenmark, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 10
Open Access | Times Cited: 70
Mechanisms of autophagy–lysosome dysfunction in neurodegenerative diseases
Ralph A. Nixon, David C. Rubinsztein
Nature Reviews Molecular Cell Biology (2024) Vol. 25, Iss. 11, pp. 926-946
Closed Access | Times Cited: 54
Ralph A. Nixon, David C. Rubinsztein
Nature Reviews Molecular Cell Biology (2024) Vol. 25, Iss. 11, pp. 926-946
Closed Access | Times Cited: 54
The Role of ATG9 Vesicles in Autophagosome Biogenesis
Elisabeth Holzer, Sascha Martens, Susanna Tulli
Journal of Molecular Biology (2024) Vol. 436, Iss. 15, pp. 168489-168489
Open Access | Times Cited: 24
Elisabeth Holzer, Sascha Martens, Susanna Tulli
Journal of Molecular Biology (2024) Vol. 436, Iss. 15, pp. 168489-168489
Open Access | Times Cited: 24
ATG9A facilitates the closure of mammalian autophagosomes
Ruheena Javed, Muriel Mari, Einar S Trosdal, et al.
The Journal of Cell Biology (2025) Vol. 224, Iss. 2
Closed Access | Times Cited: 2
Ruheena Javed, Muriel Mari, Einar S Trosdal, et al.
The Journal of Cell Biology (2025) Vol. 224, Iss. 2
Closed Access | Times Cited: 2
Noncanonical roles of ATG5 and membrane atg8ylation in retromer assembly and function
Masroor Ahmad Paddar, Fulong Wang, Einar S Trosdal, et al.
eLife (2025) Vol. 13
Open Access | Times Cited: 2
Masroor Ahmad Paddar, Fulong Wang, Einar S Trosdal, et al.
eLife (2025) Vol. 13
Open Access | Times Cited: 2
A guide to membrane atg8ylation and autophagy with reflections on immunity
Vojo Deretić, Michael Lazarou
The Journal of Cell Biology (2022) Vol. 221, Iss. 7
Open Access | Times Cited: 57
Vojo Deretić, Michael Lazarou
The Journal of Cell Biology (2022) Vol. 221, Iss. 7
Open Access | Times Cited: 57
Autophagy in cancer cell remodeling and quality control
Grace A. Hernandez, Rushika M. Perera
Molecular Cell (2022) Vol. 82, Iss. 8, pp. 1514-1527
Open Access | Times Cited: 53
Grace A. Hernandez, Rushika M. Perera
Molecular Cell (2022) Vol. 82, Iss. 8, pp. 1514-1527
Open Access | Times Cited: 53
Stress granules and mTOR are regulated by membrane atg8ylation during lysosomal damage
Jingyue Jia, Fulong Wang, Zambarlal Bhujabal, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 11
Open Access | Times Cited: 53
Jingyue Jia, Fulong Wang, Zambarlal Bhujabal, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 11
Open Access | Times Cited: 53
A possible role for VPS13-family proteins in bulk lipid transfer, membrane expansion and organelle biogenesis
Thomas J. Melia, Karin M. Reinisch
Journal of Cell Science (2022) Vol. 135, Iss. 5
Open Access | Times Cited: 51
Thomas J. Melia, Karin M. Reinisch
Journal of Cell Science (2022) Vol. 135, Iss. 5
Open Access | Times Cited: 51
STING controls energy stress-induced autophagy and energy metabolism via STX17
Yueguang Rong, Shen Zhang, Nilay Nandi, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 7
Open Access | Times Cited: 45
Yueguang Rong, Shen Zhang, Nilay Nandi, et al.
The Journal of Cell Biology (2022) Vol. 221, Iss. 7
Open Access | Times Cited: 45
Suppression of ACE2 SUMOylation protects against SARS-CoV-2 infection through TOLLIP-mediated selective autophagy
Shouheng Jin, Xing He, Ling Ma, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 41
Shouheng Jin, Xing He, Ling Ma, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 41
Autophagosome Biogenesis
Zhen Yan, Harald Stenmark
Cells (2023) Vol. 12, Iss. 4, pp. 668-668
Open Access | Times Cited: 34
Zhen Yan, Harald Stenmark
Cells (2023) Vol. 12, Iss. 4, pp. 668-668
Open Access | Times Cited: 34
ATG5 provides host protection acting as a switch in the atg8ylation cascade between autophagy and secretion
Fulong Wang, Ryan Peters, Jingyue Jia, et al.
Developmental Cell (2023) Vol. 58, Iss. 10, pp. 866-884.e8
Open Access | Times Cited: 33
Fulong Wang, Ryan Peters, Jingyue Jia, et al.
Developmental Cell (2023) Vol. 58, Iss. 10, pp. 866-884.e8
Open Access | Times Cited: 33
Parallel phospholipid transfer by Vps13 and Atg2 determines autophagosome biogenesis dynamics
Rahel Dabrowski, Susanna Tulli, Martin Graef
The Journal of Cell Biology (2023) Vol. 222, Iss. 7
Open Access | Times Cited: 29
Rahel Dabrowski, Susanna Tulli, Martin Graef
The Journal of Cell Biology (2023) Vol. 222, Iss. 7
Open Access | Times Cited: 29
Mammalian ATG8 proteins maintain autophagosomal membrane integrity through ESCRTs
Ruheena Javed, Ashish Jain, Thabata Duque, et al.
The EMBO Journal (2023) Vol. 42, Iss. 14
Closed Access | Times Cited: 29
Ruheena Javed, Ashish Jain, Thabata Duque, et al.
The EMBO Journal (2023) Vol. 42, Iss. 14
Closed Access | Times Cited: 29
ATG16L1 induces the formation of phagophore-like membrane cups
Jagan Mohan, Satish Babu Moparthi, Christine Girard-Blanc, et al.
Nature Structural & Molecular Biology (2024) Vol. 31, Iss. 9, pp. 1448-1459
Open Access | Times Cited: 12
Jagan Mohan, Satish Babu Moparthi, Christine Girard-Blanc, et al.
Nature Structural & Molecular Biology (2024) Vol. 31, Iss. 9, pp. 1448-1459
Open Access | Times Cited: 12
Neuronal activity promotes secretory autophagy for the extracellular release of α-synuclein
Yoshitsugu Nakamura, Taiki Sawai, Kensuke Kakiuchi, et al.
Journal of Biological Chemistry (2024) Vol. 300, Iss. 7, pp. 107419-107419
Open Access | Times Cited: 8
Yoshitsugu Nakamura, Taiki Sawai, Kensuke Kakiuchi, et al.
Journal of Biological Chemistry (2024) Vol. 300, Iss. 7, pp. 107419-107419
Open Access | Times Cited: 8
Redox balance and autophagy regulation in cancer progression and their therapeutic perspective
Sameer Ullah Khan, Kaneez Fatima, Shariqa Aisha, et al.
Medical Oncology (2022) Vol. 40, Iss. 1
Closed Access | Times Cited: 29
Sameer Ullah Khan, Kaneez Fatima, Shariqa Aisha, et al.
Medical Oncology (2022) Vol. 40, Iss. 1
Closed Access | Times Cited: 29
Mammalian autophagosomes form from finger-like phagophores
Claudia Puri, Matthew J. Gratian, David C. Rubinsztein
Developmental Cell (2023) Vol. 58, Iss. 23, pp. 2746-2760.e5
Open Access | Times Cited: 19
Claudia Puri, Matthew J. Gratian, David C. Rubinsztein
Developmental Cell (2023) Vol. 58, Iss. 23, pp. 2746-2760.e5
Open Access | Times Cited: 19
Enhanced SARS-CoV-2 entry via UPR-dependent AMPK-related kinase NUAK2
Vibhu Prasad, Berati Cerikan, Yannick Stahl, et al.
Molecular Cell (2023) Vol. 83, Iss. 14, pp. 2559-2577.e8
Open Access | Times Cited: 18
Vibhu Prasad, Berati Cerikan, Yannick Stahl, et al.
Molecular Cell (2023) Vol. 83, Iss. 14, pp. 2559-2577.e8
Open Access | Times Cited: 18
Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases
Martina Di Rienzo, Alessandra Romagnoli, Giulia Refolo, et al.
Autophagy (2024) Vol. 20, Iss. 12, pp. 2602-2615
Open Access | Times Cited: 8
Martina Di Rienzo, Alessandra Romagnoli, Giulia Refolo, et al.
Autophagy (2024) Vol. 20, Iss. 12, pp. 2602-2615
Open Access | Times Cited: 8