
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Itaconate confers tolerance to late NLRP3 inflammasome activation
Monika Bambousková, Lucie Potůčková, Tomáš Paulenda, et al.
Cell Reports (2021) Vol. 34, Iss. 10, pp. 108756-108756
Open Access | Times Cited: 170
Monika Bambousková, Lucie Potůčková, Tomáš Paulenda, et al.
Cell Reports (2021) Vol. 34, Iss. 10, pp. 108756-108756
Open Access | Times Cited: 170
Showing 1-25 of 170 citing articles:
The NLRP3 inflammasome: activation and regulation
Jie Xu, Gabriel Núñez
Trends in Biochemical Sciences (2022) Vol. 48, Iss. 4, pp. 331-344
Closed Access | Times Cited: 286
Jie Xu, Gabriel Núñez
Trends in Biochemical Sciences (2022) Vol. 48, Iss. 4, pp. 331-344
Closed Access | Times Cited: 286
The role of itaconate in host defense and inflammation
Christian G. Peace, Luke O'neill
Journal of Clinical Investigation (2022) Vol. 132, Iss. 2
Open Access | Times Cited: 276
Christian G. Peace, Luke O'neill
Journal of Clinical Investigation (2022) Vol. 132, Iss. 2
Open Access | Times Cited: 276
Molecular mechanisms of gasdermin D pore-forming activity
Pascal Devant, Jonathan C. Kagan
Nature Immunology (2023) Vol. 24, Iss. 7, pp. 1064-1075
Open Access | Times Cited: 137
Pascal Devant, Jonathan C. Kagan
Nature Immunology (2023) Vol. 24, Iss. 7, pp. 1064-1075
Open Access | Times Cited: 137
How location and cellular signaling combine to activate the NLRP3 inflammasome
Anil Akbal, Alesja Dernst, Marta Lovotti, et al.
Cellular and Molecular Immunology (2022) Vol. 19, Iss. 11, pp. 1201-1214
Open Access | Times Cited: 129
Anil Akbal, Alesja Dernst, Marta Lovotti, et al.
Cellular and Molecular Immunology (2022) Vol. 19, Iss. 11, pp. 1201-1214
Open Access | Times Cited: 129
Impact of intracellular innate immune receptors on immunometabolism
Wei-Chun Chou, Elena Rampanelli, Xin Li, et al.
Cellular and Molecular Immunology (2021) Vol. 19, Iss. 3, pp. 337-351
Open Access | Times Cited: 113
Wei-Chun Chou, Elena Rampanelli, Xin Li, et al.
Cellular and Molecular Immunology (2021) Vol. 19, Iss. 3, pp. 337-351
Open Access | Times Cited: 113
Myeloid-derived itaconate suppresses cytotoxic CD8+ T cells and promotes tumour growth
Hongyun Zhao, Da Teng, Lifeng Yang, et al.
Nature Metabolism (2022) Vol. 4, Iss. 12, pp. 1660-1673
Open Access | Times Cited: 104
Hongyun Zhao, Da Teng, Lifeng Yang, et al.
Nature Metabolism (2022) Vol. 4, Iss. 12, pp. 1660-1673
Open Access | Times Cited: 104
Gasdermin D pore-forming activity is redox-sensitive
Pascal Devant, Elvira Boršić, Elsy M. Ngwa, et al.
Cell Reports (2023) Vol. 42, Iss. 1, pp. 112008-112008
Open Access | Times Cited: 84
Pascal Devant, Elvira Boršić, Elsy M. Ngwa, et al.
Cell Reports (2023) Vol. 42, Iss. 1, pp. 112008-112008
Open Access | Times Cited: 84
Innate metabolic responses against viral infections
Clovis S. Palmer
Nature Metabolism (2022) Vol. 4, Iss. 10, pp. 1245-1259
Open Access | Times Cited: 79
Clovis S. Palmer
Nature Metabolism (2022) Vol. 4, Iss. 10, pp. 1245-1259
Open Access | Times Cited: 79
Mesaconate is synthesized from itaconate and exerts immunomodulatory effects in macrophages
Wei He, Antonia Henne, Mario Lauterbach, et al.
Nature Metabolism (2022) Vol. 4, Iss. 5, pp. 524-533
Open Access | Times Cited: 74
Wei He, Antonia Henne, Mario Lauterbach, et al.
Nature Metabolism (2022) Vol. 4, Iss. 5, pp. 524-533
Open Access | Times Cited: 74
TFEB induces mitochondrial itaconate synthesis to suppress bacterial growth in macrophages
Ev-Marie Schuster, Maximilian W. Epple, Katharina M. Glaser, et al.
Nature Metabolism (2022) Vol. 4, Iss. 7, pp. 856-866
Open Access | Times Cited: 72
Ev-Marie Schuster, Maximilian W. Epple, Katharina M. Glaser, et al.
Nature Metabolism (2022) Vol. 4, Iss. 7, pp. 856-866
Open Access | Times Cited: 72
The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases
Xuan Shi, Huanping Zhou, Juan Wei, et al.
Redox Biology (2022) Vol. 58, pp. 102553-102553
Open Access | Times Cited: 72
Xuan Shi, Huanping Zhou, Juan Wei, et al.
Redox Biology (2022) Vol. 58, pp. 102553-102553
Open Access | Times Cited: 72
Gasdermin D-mediated pyroptosis: mechanisms, diseases, and inhibitors
Zhen Dai, Wan-Cong Liu, Xiaoyi Chen, et al.
Frontiers in Immunology (2023) Vol. 14
Open Access | Times Cited: 71
Zhen Dai, Wan-Cong Liu, Xiaoyi Chen, et al.
Frontiers in Immunology (2023) Vol. 14
Open Access | Times Cited: 71
The NLRP3 inflammasome: regulation by metabolic signals
Antoni Olona, Stuart Leishman, Paras Anand
Trends in Immunology (2022) Vol. 43, Iss. 12, pp. 978-989
Open Access | Times Cited: 70
Antoni Olona, Stuart Leishman, Paras Anand
Trends in Immunology (2022) Vol. 43, Iss. 12, pp. 978-989
Open Access | Times Cited: 70
Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors
Xudong Wang, Siyu Su, Yuqing Zhu, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 64
Xudong Wang, Siyu Su, Yuqing Zhu, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 64
4-octyl itaconate as a metabolite derivative inhibits inflammation via alkylation of STING
Weizhen Li, Yangguang Li, Jiaqi Kang, et al.
Cell Reports (2023) Vol. 42, Iss. 3, pp. 112145-112145
Open Access | Times Cited: 58
Weizhen Li, Yangguang Li, Jiaqi Kang, et al.
Cell Reports (2023) Vol. 42, Iss. 3, pp. 112145-112145
Open Access | Times Cited: 58
Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst
Kira L. Tomlinson, Sebastián Riquelme-Barrios, Swikrity Upadhyay Baskota, et al.
Cell Reports (2023) Vol. 42, Iss. 2, pp. 112064-112064
Open Access | Times Cited: 55
Kira L. Tomlinson, Sebastián Riquelme-Barrios, Swikrity Upadhyay Baskota, et al.
Cell Reports (2023) Vol. 42, Iss. 2, pp. 112064-112064
Open Access | Times Cited: 55
ABCG2 is an itaconate exporter that limits antibacterial innate immunity by alleviating TFEB-dependent lysosomal biogenesis
Chao Chen, Zhenxing Zhang, Caiyun Liu, et al.
Cell Metabolism (2024) Vol. 36, Iss. 3, pp. 498-510.e11
Closed Access | Times Cited: 31
Chao Chen, Zhenxing Zhang, Caiyun Liu, et al.
Cell Metabolism (2024) Vol. 36, Iss. 3, pp. 498-510.e11
Closed Access | Times Cited: 31
Itaconate impairs immune control of Plasmodium by enhancing mtDNA-mediated PD-L1 expression in monocyte-derived dendritic cells
Theresa Ramalho, Patrícia A. Assis, Ogooluwa Ojelabi, et al.
Cell Metabolism (2024) Vol. 36, Iss. 3, pp. 484-497.e6
Open Access | Times Cited: 29
Theresa Ramalho, Patrícia A. Assis, Ogooluwa Ojelabi, et al.
Cell Metabolism (2024) Vol. 36, Iss. 3, pp. 484-497.e6
Open Access | Times Cited: 29
The IRG1–itaconate axis protects from cholesterol-induced inflammation and atherosclerosis
Yannick Cyr, Fazli Bozal, José Gabriel Barcia Durán, et al.
Proceedings of the National Academy of Sciences (2024) Vol. 121, Iss. 15
Open Access | Times Cited: 28
Yannick Cyr, Fazli Bozal, José Gabriel Barcia Durán, et al.
Proceedings of the National Academy of Sciences (2024) Vol. 121, Iss. 15
Open Access | Times Cited: 28
The gasdermin family: emerging therapeutic targets in diseases
Cheng‐long Zhu, Sheng Xu, Ruoyu Jiang, et al.
Signal Transduction and Targeted Therapy (2024) Vol. 9, Iss. 1
Open Access | Times Cited: 26
Cheng‐long Zhu, Sheng Xu, Ruoyu Jiang, et al.
Signal Transduction and Targeted Therapy (2024) Vol. 9, Iss. 1
Open Access | Times Cited: 26
Itaconate in host inflammation and defense
Dan Ye, Pu Wang, Leilei Chen, et al.
Trends in Endocrinology and Metabolism (2024) Vol. 35, Iss. 7, pp. 586-606
Closed Access | Times Cited: 17
Dan Ye, Pu Wang, Leilei Chen, et al.
Trends in Endocrinology and Metabolism (2024) Vol. 35, Iss. 7, pp. 586-606
Closed Access | Times Cited: 17
Inducible antibacterial responses in macrophages
Matthew J. Sweet, Divya Ramnath, Amit Singhal, et al.
Nature reviews. Immunology (2024) Vol. 25, Iss. 2, pp. 92-107
Closed Access | Times Cited: 17
Matthew J. Sweet, Divya Ramnath, Amit Singhal, et al.
Nature reviews. Immunology (2024) Vol. 25, Iss. 2, pp. 92-107
Closed Access | Times Cited: 17
Pro-inflammatory macrophages produce mitochondria-derived superoxide by reverse electron transport at complex I that regulates IL-1β release during NLRP3 inflammasome activation
Alva M. Casey, Dylan G. Ryan, Hiran A. Prag, et al.
Nature Metabolism (2025)
Open Access | Times Cited: 2
Alva M. Casey, Dylan G. Ryan, Hiran A. Prag, et al.
Nature Metabolism (2025)
Open Access | Times Cited: 2
Regulation of the NLRP3 Inflammasome by Posttranslational Modifications
Safoura Zangiabadi, Ali A. Abdul‐Sater
The Journal of Immunology (2022) Vol. 208, Iss. 2, pp. 286-292
Open Access | Times Cited: 52
Safoura Zangiabadi, Ali A. Abdul‐Sater
The Journal of Immunology (2022) Vol. 208, Iss. 2, pp. 286-292
Open Access | Times Cited: 52
Itaconate and fumarate derivatives inhibit priming and activation of the canonical NLRP3 inflammasome in macrophages
Christopher Hoyle, Jack Green, Stuart M. Allan, et al.
Immunology (2022) Vol. 165, Iss. 4, pp. 460-480
Open Access | Times Cited: 50
Christopher Hoyle, Jack Green, Stuart M. Allan, et al.
Immunology (2022) Vol. 165, Iss. 4, pp. 460-480
Open Access | Times Cited: 50