OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis
Mark A. Gillespie, Carmen G. Palii, Daniel Sánchez‐Taltavull, et al.
Molecular Cell (2020) Vol. 78, Iss. 5, pp. 960-974.e11
Open Access | Times Cited: 100

Showing 1-25 of 100 citing articles:

Deciphering the multi-scale, quantitative cis-regulatory code
Seungsoo Kim, Joanna Wysocka
Molecular Cell (2023) Vol. 83, Iss. 3, pp. 373-392
Open Access | Times Cited: 166

The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer–promoter communication
Jonathan P. Karr, John J. Ferrie, Robert Tjian, et al.
Genes & Development (2021) Vol. 36, Iss. 1-2, pp. 7-16
Open Access | Times Cited: 118

NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells
Amy F. Chen, Benjamin Parks, Arwa S. Kathiria, et al.
Nature Methods (2022) Vol. 19, Iss. 5, pp. 547-553
Open Access | Times Cited: 97

Design principles of 3D epigenetic memory systems
Jeremy A. Owen, Dino Osmanović, Leonid A. Mirny
Science (2023) Vol. 382, Iss. 6672
Open Access | Times Cited: 46

Human Erythroid Progenitors Are Directly Infected by SARS-CoV-2: Implications for Emerging Erythropoiesis in Severe COVID-19 Patients
Hector Huerga Encabo, William Grey, Manuel Garcia-Albornoz, et al.
Stem Cell Reports (2021) Vol. 16, Iss. 3, pp. 428-436
Open Access | Times Cited: 72

The transcription factor BACH1 at the crossroads of cancer biology: From epithelial–mesenchymal transition to ferroptosis
Kazuhiko Igarashi, Hironari Nishizawa, Yuriko Saiki, et al.
Journal of Biological Chemistry (2021) Vol. 297, Iss. 3, pp. 101032-101032
Open Access | Times Cited: 70

Supercharging BRD4 with NUT in carcinoma
Kyle P. Eagen, Christopher A. French
Oncogene (2021) Vol. 40, Iss. 8, pp. 1396-1408
Open Access | Times Cited: 64

Transcription factor competition at the γ-globin promoters controls hemoglobin switching
Nan Liu, Shuqian Xu, Qiuming Yao, et al.
Nature Genetics (2021) Vol. 53, Iss. 4, pp. 511-520
Open Access | Times Cited: 64

Fast-acting chemical tools to delineate causality in transcriptional control
Martin G. Jaeger, Georg Winter
Molecular Cell (2021) Vol. 81, Iss. 8, pp. 1617-1630
Open Access | Times Cited: 60

The role of CD71+ erythroid cells in the regulation of the immune response
Tomasz M. Grzywa, Dominika Nowis, Jakub Gołąb
Pharmacology & Therapeutics (2021) Vol. 228, pp. 107927-107927
Open Access | Times Cited: 57

Recent advances in the field of single-cell proteomics
Valdemaras Petrosius, Erwin M. Schoof
Translational Oncology (2022) Vol. 27, pp. 101556-101556
Open Access | Times Cited: 50

Multifunctional Intrinsically Disordered Regions in Transcription Factors
Matti Már, Kateryna Nitsenko, Pétur O. Heidarsson
Chemistry - A European Journal (2023) Vol. 29, Iss. 21
Open Access | Times Cited: 36

p300 is an obligate integrator of combinatorial transcription factor inputs
John J. Ferrie, Jonathan P. Karr, Thomas G.W. Graham, et al.
Molecular Cell (2023) Vol. 84, Iss. 2, pp. 234-243.e4
Open Access | Times Cited: 28

Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma
Di Yu, Yingying Liang, Claudia Kim, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 23

Contextual computation by competitive protein dimerization networks
Jacob Parres-Gold, Matthew E. Levine, Benjamin Emert, et al.
Cell (2025)
Open Access | Times Cited: 1

ZNF410 represses fetal globin by singular control of CHD4
Divya S. Vinjamur, Qiuming Yao, Mitchel A. Cole, et al.
Nature Genetics (2021) Vol. 53, Iss. 5, pp. 719-728
Open Access | Times Cited: 52

Molecular and cellular mechanisms that regulate human erythropoiesis
Alexis Caulier, Vijay G. Sankaran
Blood (2021) Vol. 139, Iss. 16, pp. 2450-2459
Open Access | Times Cited: 50

Structural insights into p300 regulation and acetylation-dependent genome organisation
Ziad Ibrahim, Tao Wang, Olivier Destaing, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 35

In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis
David Lara‐Astiaso, Ainhoa Goñi‐Salaverri, Julen Mendieta-Esteban, et al.
Nature Genetics (2023) Vol. 55, Iss. 9, pp. 1542-1554
Open Access | Times Cited: 19

A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells
Jackson J. Peterson, Catherine A. Lewis, Samuel D. Burgos, et al.
Cell chemical biology (2023) Vol. 30, Iss. 12, pp. 1617-1633.e9
Open Access | Times Cited: 18

Genome-Wide Estrogen Receptor Activity in Breast Cancer
Anca M. Farcas, Sankari Nagarajan, Sabina Cosulich, et al.
Endocrinology (2020) Vol. 162, Iss. 2
Open Access | Times Cited: 44

Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development
Tomasz M. Grzywa, Magdalena Justyniarska, Dominika Nowis, et al.
Cancers (2021) Vol. 13, Iss. 4, pp. 870-870
Open Access | Times Cited: 35

Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis
Dong Li, Fan Wu, Shuo Zhou, et al.
Nature Structural & Molecular Biology (2023) Vol. 30, Iss. 4, pp. 463-474
Open Access | Times Cited: 15

CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease
Selami Demirci, Alexis Leonard, Khaled Essawi, et al.
Molecular Therapy — Methods & Clinical Development (2021) Vol. 23, pp. 276-285
Open Access | Times Cited: 30

Page 1 - Next Page

Scroll to top