
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Phase Transitions of Associative Biomacromolecules
Rohit V. Pappu, Samuel R. Cohen, Furqan Dar, et al.
Chemical Reviews (2023) Vol. 123, Iss. 14, pp. 8945-8987
Closed Access | Times Cited: 229
Rohit V. Pappu, Samuel R. Cohen, Furqan Dar, et al.
Chemical Reviews (2023) Vol. 123, Iss. 14, pp. 8945-8987
Closed Access | Times Cited: 229
Showing 1-25 of 229 citing articles:
The molecular basis for cellular function of intrinsically disordered protein regions
Alex S. Holehouse, Birthe B. Kragelund
Nature Reviews Molecular Cell Biology (2023) Vol. 25, Iss. 3, pp. 187-211
Open Access | Times Cited: 227
Alex S. Holehouse, Birthe B. Kragelund
Nature Reviews Molecular Cell Biology (2023) Vol. 25, Iss. 3, pp. 187-211
Open Access | Times Cited: 227
Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions
Mina Farag, Wade M. Borcherds, Anne Bremer, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 94
Mina Farag, Wade M. Borcherds, Anne Bremer, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 94
A disordered region controls cBAF activity via condensation and partner recruitment
Ajinkya Patil, Amy R. Strom, João A. Paulo, et al.
Cell (2023) Vol. 186, Iss. 22, pp. 4936-4955.e26
Open Access | Times Cited: 84
Ajinkya Patil, Amy R. Strom, João A. Paulo, et al.
Cell (2023) Vol. 186, Iss. 22, pp. 4936-4955.e26
Open Access | Times Cited: 84
Expanding the molecular language of protein liquid–liquid phase separation
Shiv Rekhi, Cristobal Garcia Garcia, Mayur Barai, et al.
Nature Chemistry (2024) Vol. 16, Iss. 7, pp. 1113-1124
Open Access | Times Cited: 77
Shiv Rekhi, Cristobal Garcia Garcia, Mayur Barai, et al.
Nature Chemistry (2024) Vol. 16, Iss. 7, pp. 1113-1124
Open Access | Times Cited: 77
Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient
Matthew R. King, Kiersten M. Ruff, Andrew Z. Lin, et al.
Cell (2024) Vol. 187, Iss. 8, pp. 1889-1906.e24
Open Access | Times Cited: 68
Matthew R. King, Kiersten M. Ruff, Andrew Z. Lin, et al.
Cell (2024) Vol. 187, Iss. 8, pp. 1889-1906.e24
Open Access | Times Cited: 68
Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain
Saumyak Mukherjee, Lars V. Schäfer
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 49
Saumyak Mukherjee, Lars V. Schäfer
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 49
Sequence-specific interactions determine viscoelasticity and ageing dynamics of protein condensates
Ibraheem Alshareedah, Wade M. Borcherds, Samuel R. Cohen, et al.
Nature Physics (2024) Vol. 20, Iss. 9, pp. 1482-1491
Open Access | Times Cited: 38
Ibraheem Alshareedah, Wade M. Borcherds, Samuel R. Cohen, et al.
Nature Physics (2024) Vol. 20, Iss. 9, pp. 1482-1491
Open Access | Times Cited: 38
Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions
Begoña Monterroso, William Margolin, Arnold J. Boersma, et al.
Chemical Reviews (2024) Vol. 124, Iss. 4, pp. 1899-1949
Open Access | Times Cited: 31
Begoña Monterroso, William Margolin, Arnold J. Boersma, et al.
Chemical Reviews (2024) Vol. 124, Iss. 4, pp. 1899-1949
Open Access | Times Cited: 31
Protein misfolding and amyloid nucleation through liquid–liquid phase separation
S. Mukherjee, Manisha Poudyal, K. Dave, et al.
Chemical Society Reviews (2024) Vol. 53, Iss. 10, pp. 4976-5013
Closed Access | Times Cited: 25
S. Mukherjee, Manisha Poudyal, K. Dave, et al.
Chemical Society Reviews (2024) Vol. 53, Iss. 10, pp. 4976-5013
Closed Access | Times Cited: 25
Emergent microenvironments of nucleoli
Matthew R. King, Kiersten M. Ruff, Rohit V. Pappu
Nucleus (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 22
Matthew R. King, Kiersten M. Ruff, Rohit V. Pappu
Nucleus (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 22
Fundamental Aspects of Phase-Separated Biomolecular Condensates
Huan‐Xiang Zhou, Divya Kota, Sanbo Qin, et al.
Chemical Reviews (2024) Vol. 124, Iss. 13, pp. 8550-8595
Closed Access | Times Cited: 22
Huan‐Xiang Zhou, Divya Kota, Sanbo Qin, et al.
Chemical Reviews (2024) Vol. 124, Iss. 13, pp. 8550-8595
Closed Access | Times Cited: 22
Biomolecular condensates form spatially inhomogeneous network fluids
Furqan Dar, Samuel R. Cohen, Diana M. Mitrea, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 20
Furqan Dar, Samuel R. Cohen, Diana M. Mitrea, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 20
MolPhase, an advanced prediction algorithm for protein phase separation
Qiyu Liang, Nana Peng, Yi Xie, et al.
The EMBO Journal (2024) Vol. 43, Iss. 9, pp. 1898-1918
Open Access | Times Cited: 18
Qiyu Liang, Nana Peng, Yi Xie, et al.
The EMBO Journal (2024) Vol. 43, Iss. 9, pp. 1898-1918
Open Access | Times Cited: 18
Biomolecular Condensates are Characterized by Interphase Electric Potentials
Ammon E. Posey, A Bremer, Nadia A. Erkamp, et al.
Journal of the American Chemical Society (2024)
Closed Access | Times Cited: 17
Ammon E. Posey, A Bremer, Nadia A. Erkamp, et al.
Journal of the American Chemical Society (2024)
Closed Access | Times Cited: 17
Coiled-coil domains are sufficient to drive liquid-liquid phase separation in protein models
Dominique Ramirez, Loren E. Hough, Michael R. Shirts
Biophysical Journal (2024) Vol. 123, Iss. 6, pp. 703-717
Open Access | Times Cited: 16
Dominique Ramirez, Loren E. Hough, Michael R. Shirts
Biophysical Journal (2024) Vol. 123, Iss. 6, pp. 703-717
Open Access | Times Cited: 16
Prediction of phase separation propensities of disordered proteins from sequence
Sören von Bülow, Giulio Tesei, Kresten Lindorff‐Larsen
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 16
Sören von Bülow, Giulio Tesei, Kresten Lindorff‐Larsen
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 16
Molecular determinants of condensate composition
Alex S. Holehouse, Simon Alberti
Molecular Cell (2025) Vol. 85, Iss. 2, pp. 290-308
Open Access | Times Cited: 4
Alex S. Holehouse, Simon Alberti
Molecular Cell (2025) Vol. 85, Iss. 2, pp. 290-308
Open Access | Times Cited: 4
The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis
Swastik Kar, Rachael Deis, Adam Ahmad, et al.
Current Biology (2025)
Open Access | Times Cited: 3
Swastik Kar, Rachael Deis, Adam Ahmad, et al.
Current Biology (2025)
Open Access | Times Cited: 3
Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function
Nathaniel Hess, Jerelle A. Joseph
Trends in Biochemical Sciences (2025)
Open Access | Times Cited: 3
Nathaniel Hess, Jerelle A. Joseph
Trends in Biochemical Sciences (2025)
Open Access | Times Cited: 3
Protein quality control machinery: regulators of condensate architecture and functionality
Anitha Rajendran, Carlos A. Castañeda
Trends in Biochemical Sciences (2025)
Closed Access | Times Cited: 2
Anitha Rajendran, Carlos A. Castañeda
Trends in Biochemical Sciences (2025)
Closed Access | Times Cited: 2
Martini3-IDP: improved Martini 3 force field for disordered proteins
Liguo Wang, Christopher Brasnett, Luís Borges-Araújo, et al.
Nature Communications (2025) Vol. 16, Iss. 1
Open Access | Times Cited: 2
Liguo Wang, Christopher Brasnett, Luís Borges-Araújo, et al.
Nature Communications (2025) Vol. 16, Iss. 1
Open Access | Times Cited: 2
Dynamical control enables the formation of demixed biomolecular condensates
Andrew Z. Lin, Kiersten M. Ruff, Furqan Dar, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 35
Andrew Z. Lin, Kiersten M. Ruff, Furqan Dar, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 35
Biological condensates form percolated networks with molecular motion properties distinctly different from dilute solutions
Zeyu Shen, Bowen Jia, Yang Xu, et al.
eLife (2023) Vol. 12
Open Access | Times Cited: 28
Zeyu Shen, Bowen Jia, Yang Xu, et al.
eLife (2023) Vol. 12
Open Access | Times Cited: 28
Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation
Chenyang Lan, Juhyeong Kim, Svenja Ulferts, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 26
Chenyang Lan, Juhyeong Kim, Svenja Ulferts, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 26
Theory and Simulation of Multiphase Coexistence in Biomolecular Mixtures
William M. Jacobs
Journal of Chemical Theory and Computation (2023) Vol. 19, Iss. 12, pp. 3429-3445
Open Access | Times Cited: 25
William M. Jacobs
Journal of Chemical Theory and Computation (2023) Vol. 19, Iss. 12, pp. 3429-3445
Open Access | Times Cited: 25