
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes
Monique P. C. Mulder, Katharina F. Witting, Ilana Berlin, et al.
Nature Chemical Biology (2016) Vol. 12, Iss. 7, pp. 523-530
Open Access | Times Cited: 142
Monique P. C. Mulder, Katharina F. Witting, Ilana Berlin, et al.
Nature Chemical Biology (2016) Vol. 12, Iss. 7, pp. 523-530
Open Access | Times Cited: 142
Showing 1-25 of 142 citing articles:
Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism
Laurent Cappadocia, Christopher D. Lima
Chemical Reviews (2017) Vol. 118, Iss. 3, pp. 889-918
Open Access | Times Cited: 468
Laurent Cappadocia, Christopher D. Lima
Chemical Reviews (2017) Vol. 118, Iss. 3, pp. 889-918
Open Access | Times Cited: 468
Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly
Daniel Horn‐Ghetko, David T. Krist, J. Rajan Prabu, et al.
Nature (2021) Vol. 590, Iss. 7847, pp. 671-676
Open Access | Times Cited: 150
Daniel Horn‐Ghetko, David T. Krist, J. Rajan Prabu, et al.
Nature (2021) Vol. 590, Iss. 7847, pp. 671-676
Open Access | Times Cited: 150
Recent advances in activity-based probes (ABPs) and affinity-based probes (AfBPs) for profiling of enzymes
Haixiao Fang, Bo Peng, Sing Yee Ong, et al.
Chemical Science (2021) Vol. 12, Iss. 24, pp. 8288-8310
Open Access | Times Cited: 124
Haixiao Fang, Bo Peng, Sing Yee Ong, et al.
Chemical Science (2021) Vol. 12, Iss. 24, pp. 8288-8310
Open Access | Times Cited: 124
Synthesis of modified proteins via functionalization of dehydroalanine
Jitka Daďová, Sébastien R. G. Galan, Benjamin G. Davis
Current Opinion in Chemical Biology (2018) Vol. 46, pp. 71-81
Open Access | Times Cited: 145
Jitka Daďová, Sébastien R. G. Galan, Benjamin G. Davis
Current Opinion in Chemical Biology (2018) Vol. 46, pp. 71-81
Open Access | Times Cited: 145
HECT E3 ubiquitin ligases – emerging insights into their biological roles and disease relevance
Yaya Wang, Diana Argiles-Castillo, Emma I. Kane, et al.
Journal of Cell Science (2020) Vol. 133, Iss. 7
Open Access | Times Cited: 112
Yaya Wang, Diana Argiles-Castillo, Emma I. Kane, et al.
Journal of Cell Science (2020) Vol. 133, Iss. 7
Open Access | Times Cited: 112
Activity‐based probes for the ubiquitin conjugation–deconjugation machinery: new chemistries, new tools, and new insights
David S. Hewings, John A. Flygare, Matthew Bogyo, et al.
FEBS Journal (2017) Vol. 284, Iss. 10, pp. 1555-1576
Open Access | Times Cited: 111
David S. Hewings, John A. Flygare, Matthew Bogyo, et al.
FEBS Journal (2017) Vol. 284, Iss. 10, pp. 1555-1576
Open Access | Times Cited: 111
Visualizing ubiquitination in mammalian cells
Sjoerd J. L. van Wijk, Simone Fulda, Ivan Đikić, et al.
EMBO Reports (2019) Vol. 20, Iss. 2
Open Access | Times Cited: 108
Sjoerd J. L. van Wijk, Simone Fulda, Ivan Đikić, et al.
EMBO Reports (2019) Vol. 20, Iss. 2
Open Access | Times Cited: 108
Ubiquitomics: An Overview and Future
George Vere, Rachel Kealy, Benedikt M. Kessler, et al.
Biomolecules (2020) Vol. 10, Iss. 10, pp. 1453-1453
Open Access | Times Cited: 102
George Vere, Rachel Kealy, Benedikt M. Kessler, et al.
Biomolecules (2020) Vol. 10, Iss. 10, pp. 1453-1453
Open Access | Times Cited: 102
Resolving the Complexity of Ubiquitin Networks
Katarzyna W. Kliza, Koraljka Husnjak
Frontiers in Molecular Biosciences (2020) Vol. 7
Open Access | Times Cited: 98
Katarzyna W. Kliza, Koraljka Husnjak
Frontiers in Molecular Biosciences (2020) Vol. 7
Open Access | Times Cited: 98
An overview of activity-based probes for glycosidases
Liang Ping Wu, Zachary Armstrong, Sybrin P. Schröder, et al.
Current Opinion in Chemical Biology (2019) Vol. 53, pp. 25-36
Open Access | Times Cited: 97
Liang Ping Wu, Zachary Armstrong, Sybrin P. Schröder, et al.
Current Opinion in Chemical Biology (2019) Vol. 53, pp. 25-36
Open Access | Times Cited: 97
Dehydroamino acids: chemical multi-tools for late-stage diversification
Jonathan W. Bogart, Albert A. Bowers
Organic & Biomolecular Chemistry (2019) Vol. 17, Iss. 15, pp. 3653-3669
Open Access | Times Cited: 94
Jonathan W. Bogart, Albert A. Bowers
Organic & Biomolecular Chemistry (2019) Vol. 17, Iss. 15, pp. 3653-3669
Open Access | Times Cited: 94
Ubiquitin Signaling: Chemistry Comes to the Rescue
Sachitanand M. Mali, Sumeet K. Singh, Emad Eid, et al.
Journal of the American Chemical Society (2017) Vol. 139, Iss. 14, pp. 4971-4986
Closed Access | Times Cited: 92
Sachitanand M. Mali, Sumeet K. Singh, Emad Eid, et al.
Journal of the American Chemical Society (2017) Vol. 139, Iss. 14, pp. 4971-4986
Closed Access | Times Cited: 92
Chemical modification of enzymes to improve biocatalytic performance
Pritam Giri, Amol D. Pagar, Mahesh D. Patil, et al.
Biotechnology Advances (2021) Vol. 53, pp. 107868-107868
Closed Access | Times Cited: 62
Pritam Giri, Amol D. Pagar, Mahesh D. Patil, et al.
Biotechnology Advances (2021) Vol. 53, pp. 107868-107868
Closed Access | Times Cited: 62
Chemical Synthesis of Activity‐Based E2‐Ubiquitin Probes for the Structural Analysis of E3 Ligase‐Catalyzed Transthiolation
Lujun Liang, Guo‐Chao Chu, Qian Qu, et al.
Angewandte Chemie International Edition (2021) Vol. 60, Iss. 31, pp. 17171-17177
Closed Access | Times Cited: 61
Lujun Liang, Guo‐Chao Chu, Qian Qu, et al.
Angewandte Chemie International Edition (2021) Vol. 60, Iss. 31, pp. 17171-17177
Closed Access | Times Cited: 61
Synthetic E2-Ub-nucleosome conjugates for studying nucleosome ubiquitination
Huasong Ai, Zebin Tong, Zhiheng Deng, et al.
Chem (2023) Vol. 9, Iss. 5, pp. 1221-1240
Open Access | Times Cited: 38
Huasong Ai, Zebin Tong, Zhiheng Deng, et al.
Chem (2023) Vol. 9, Iss. 5, pp. 1221-1240
Open Access | Times Cited: 38
E2–Ub-R74G strategy reveals E2-specific ubiquitin conjugation profiles in live cells
Siqi Shen, Hang Yin
Nature Chemical Biology (2025)
Closed Access | Times Cited: 1
Siqi Shen, Hang Yin
Nature Chemical Biology (2025)
Closed Access | Times Cited: 1
UbiREAD deciphers proteasomal degradation code of homotypic and branched K48 and K63 ubiquitin chains
L. Kiss, Leo C. James, Brenda A. Schulman
Molecular Cell (2025)
Open Access | Times Cited: 1
L. Kiss, Leo C. James, Brenda A. Schulman
Molecular Cell (2025)
Open Access | Times Cited: 1
Tools to investigate the ubiquitin proteasome system
Yves Leestemaker, Huib Ovaa
Drug Discovery Today Technologies (2017) Vol. 26, pp. 25-31
Open Access | Times Cited: 78
Yves Leestemaker, Huib Ovaa
Drug Discovery Today Technologies (2017) Vol. 26, pp. 25-31
Open Access | Times Cited: 78
Cell-Permeable Activity-Based Ubiquitin Probes Enable Intracellular Profiling of Human Deubiquitinases
Weijun Gui, Christine A. Ott, Kun Yang, et al.
Journal of the American Chemical Society (2018) Vol. 140, Iss. 39, pp. 12424-12433
Open Access | Times Cited: 76
Weijun Gui, Christine A. Ott, Kun Yang, et al.
Journal of the American Chemical Society (2018) Vol. 140, Iss. 39, pp. 12424-12433
Open Access | Times Cited: 76
Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3
Arno F. Alpi, Viduth K. Chaugule, Helen Walden
Biochemical Journal (2016) Vol. 473, Iss. 20, pp. 3401-3419
Open Access | Times Cited: 73
Arno F. Alpi, Viduth K. Chaugule, Helen Walden
Biochemical Journal (2016) Vol. 473, Iss. 20, pp. 3401-3419
Open Access | Times Cited: 73
Emerging drug development technologies targeting ubiquitination for cancer therapeutics
Gianluca Veggiani, María Carla Rosales Gerpe, Sachdev S. Sidhu, et al.
Pharmacology & Therapeutics (2019) Vol. 199, pp. 139-154
Open Access | Times Cited: 60
Gianluca Veggiani, María Carla Rosales Gerpe, Sachdev S. Sidhu, et al.
Pharmacology & Therapeutics (2019) Vol. 199, pp. 139-154
Open Access | Times Cited: 60
Palladium‐Mediated Cleavage of Proteins with Thiazolidine‐Modified Backbone in Live Cells
Guy Mann, Gandhesiri Satish, Roman Meledin, et al.
Angewandte Chemie International Edition (2019) Vol. 58, Iss. 38, pp. 13540-13549
Closed Access | Times Cited: 59
Guy Mann, Gandhesiri Satish, Roman Meledin, et al.
Angewandte Chemie International Edition (2019) Vol. 58, Iss. 38, pp. 13540-13549
Closed Access | Times Cited: 59
Development and application of ubiquitin-based chemical probes
Xin Sui, Yu Wang, Yunxiang Du, et al.
Chemical Science (2020) Vol. 11, Iss. 47, pp. 12633-12646
Open Access | Times Cited: 57
Xin Sui, Yu Wang, Yunxiang Du, et al.
Chemical Science (2020) Vol. 11, Iss. 47, pp. 12633-12646
Open Access | Times Cited: 57
Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond
Bo Zhao, Yien Che Tsai, Bo Jin, et al.
Pharmacological Reviews (2020) Vol. 72, Iss. 2, pp. 380-413
Open Access | Times Cited: 51
Bo Zhao, Yien Che Tsai, Bo Jin, et al.
Pharmacological Reviews (2020) Vol. 72, Iss. 2, pp. 380-413
Open Access | Times Cited: 51
Enhanced Live‐Cell Delivery of Synthetic Proteins Assisted by Cell‐Penetrating Peptides Fused to DABCYL
Shaswati Mandal, Guy Mann, Gandhesiri Satish, et al.
Angewandte Chemie International Edition (2021) Vol. 60, Iss. 13, pp. 7333-7343
Open Access | Times Cited: 48
Shaswati Mandal, Guy Mann, Gandhesiri Satish, et al.
Angewandte Chemie International Edition (2021) Vol. 60, Iss. 13, pp. 7333-7343
Open Access | Times Cited: 48