
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation
Bernd Schöpf, Hansi Weißensteiner, Georg Schäfer, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 110
Bernd Schöpf, Hansi Weißensteiner, Georg Schäfer, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 110
Showing 1-25 of 110 citing articles:
Mitochondrial DNA copy number in human disease: the more the better?
Roberta Filograna, Mara Mennuni, David Alsina, et al.
FEBS Letters (2020) Vol. 595, Iss. 8, pp. 976-1002
Open Access | Times Cited: 355
Roberta Filograna, Mara Mennuni, David Alsina, et al.
FEBS Letters (2020) Vol. 595, Iss. 8, pp. 976-1002
Open Access | Times Cited: 355
Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours
Sonia Missiroli, Mariasole Perrone, Ilaria Genovese, et al.
EBioMedicine (2020) Vol. 59, pp. 102943-102943
Open Access | Times Cited: 189
Sonia Missiroli, Mariasole Perrone, Ilaria Genovese, et al.
EBioMedicine (2020) Vol. 59, pp. 102943-102943
Open Access | Times Cited: 189
An Epigenetic Role of Mitochondria in Cancer
Yue Liu, Chao Chen, Xinye Wang, et al.
Cells (2022) Vol. 11, Iss. 16, pp. 2518-2518
Open Access | Times Cited: 87
Yue Liu, Chao Chen, Xinye Wang, et al.
Cells (2022) Vol. 11, Iss. 16, pp. 2518-2518
Open Access | Times Cited: 87
Mitochondria in brain diseases: Bridging structural-mechanistic insights into precision-targeted therapies
Jun Liao, Wenxiu He, Lisha Li, et al.
(2025), pp. 100016-100016
Open Access | Times Cited: 3
Jun Liao, Wenxiu He, Lisha Li, et al.
(2025), pp. 100016-100016
Open Access | Times Cited: 3
The Common Hallmarks of Aging, Circadian Rhythms and Cancer: Implications for Therapeutic Strategies
Jie Wang, Fanglin Shao, Qingxin Yu, et al.
Research (2025) Vol. 8
Open Access | Times Cited: 2
Jie Wang, Fanglin Shao, Qingxin Yu, et al.
Research (2025) Vol. 8
Open Access | Times Cited: 2
Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells
Chia‐Lin Chen, Sheng-Chieh Hsu, Tan-Ya Chung, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 86
Chia‐Lin Chen, Sheng-Chieh Hsu, Tan-Ya Chung, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 86
Mitochondrial DNA is a major source of driver mutations in cancer
Min‐Soo Kim, Mahnoor Mahmood, Ed Reznik, et al.
Trends in cancer (2022) Vol. 8, Iss. 12, pp. 1046-1059
Open Access | Times Cited: 56
Min‐Soo Kim, Mahnoor Mahmood, Ed Reznik, et al.
Trends in cancer (2022) Vol. 8, Iss. 12, pp. 1046-1059
Open Access | Times Cited: 56
Mitochondrial and metabolic alterations in cancer cells
Jacopo Di Gregorio, Sabrina Petricca, Roberto Iorio, et al.
European Journal of Cell Biology (2022) Vol. 101, Iss. 3, pp. 151225-151225
Open Access | Times Cited: 45
Jacopo Di Gregorio, Sabrina Petricca, Roberto Iorio, et al.
European Journal of Cell Biology (2022) Vol. 101, Iss. 3, pp. 151225-151225
Open Access | Times Cited: 45
Mitochondrial DNA-targeted therapy: A novel approach to combat cancer
Yumeng Lin, Bowen Yang, Yibo Huang, et al.
Cell Insight (2023) Vol. 2, Iss. 4, pp. 100113-100113
Open Access | Times Cited: 23
Yumeng Lin, Bowen Yang, Yibo Huang, et al.
Cell Insight (2023) Vol. 2, Iss. 4, pp. 100113-100113
Open Access | Times Cited: 23
Complex II ambiguities—FADH2 in the electron transfer system
Erich Gnaiger
Journal of Biological Chemistry (2023) Vol. 300, Iss. 1, pp. 105470-105470
Open Access | Times Cited: 23
Erich Gnaiger
Journal of Biological Chemistry (2023) Vol. 300, Iss. 1, pp. 105470-105470
Open Access | Times Cited: 23
Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment
Chen Huang, Aiwu Bian, Wenbo Zhou, et al.
ACS Central Science (2024) Vol. 10, Iss. 3, pp. 579-594
Open Access | Times Cited: 16
Chen Huang, Aiwu Bian, Wenbo Zhou, et al.
ACS Central Science (2024) Vol. 10, Iss. 3, pp. 579-594
Open Access | Times Cited: 16
Metabolic changes during prostate cancer development and progression
Alicia-Marie K. Beier, Martin Puhr, Matthias B. Stope, et al.
Journal of Cancer Research and Clinical Oncology (2022) Vol. 149, Iss. 5, pp. 2259-2270
Open Access | Times Cited: 38
Alicia-Marie K. Beier, Martin Puhr, Matthias B. Stope, et al.
Journal of Cancer Research and Clinical Oncology (2022) Vol. 149, Iss. 5, pp. 2259-2270
Open Access | Times Cited: 38
Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions
Weiyi Shen, Jiamin He, Tongyao Hou, et al.
Aging and Disease (2022) Vol. 13, Iss. 4, pp. 1063-1063
Open Access | Times Cited: 31
Weiyi Shen, Jiamin He, Tongyao Hou, et al.
Aging and Disease (2022) Vol. 13, Iss. 4, pp. 1063-1063
Open Access | Times Cited: 31
TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability
Surbhi Chouhan, Mithila Sawant, Cody Weimholt, et al.
Autophagy (2022) Vol. 19, Iss. 3, pp. 1000-1025
Open Access | Times Cited: 31
Surbhi Chouhan, Mithila Sawant, Cody Weimholt, et al.
Autophagy (2022) Vol. 19, Iss. 3, pp. 1000-1025
Open Access | Times Cited: 31
Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion
Lilianne Frégeau-Proulx, Aurélie Lacouture, Line Berthiaume, et al.
Molecular Metabolism (2022) Vol. 62, pp. 101516-101516
Open Access | Times Cited: 29
Lilianne Frégeau-Proulx, Aurélie Lacouture, Line Berthiaume, et al.
Molecular Metabolism (2022) Vol. 62, pp. 101516-101516
Open Access | Times Cited: 29
Roles of Reactive Oxygen Species in Biological Behaviors of Prostate Cancer
Chenglin Han, Zilong Wang, Yingkun Xu, et al.
BioMed Research International (2020) Vol. 2020, pp. 1-19
Open Access | Times Cited: 45
Chenglin Han, Zilong Wang, Yingkun Xu, et al.
BioMed Research International (2020) Vol. 2020, pp. 1-19
Open Access | Times Cited: 45
Subgroup-Independent Mapping of Renal Cell Carcinoma—Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries
André Marquardt, Antonio Giovanni Solimando, Alexander Kerscher, et al.
Frontiers in Oncology (2021) Vol. 11
Open Access | Times Cited: 36
André Marquardt, Antonio Giovanni Solimando, Alexander Kerscher, et al.
Frontiers in Oncology (2021) Vol. 11
Open Access | Times Cited: 36
LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis
Wensu Wei, Ning Wang, Minhua Deng, et al.
Redox Biology (2021) Vol. 48, pp. 102201-102201
Open Access | Times Cited: 36
Wensu Wei, Ning Wang, Minhua Deng, et al.
Redox Biology (2021) Vol. 48, pp. 102201-102201
Open Access | Times Cited: 36
NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation
Alexandros Papachristodoulou, Antonio Rodriguez-Calero, Sukanya Panja, et al.
Cancer Discovery (2021) Vol. 11, Iss. 9, pp. 2316-2333
Open Access | Times Cited: 35
Alexandros Papachristodoulou, Antonio Rodriguez-Calero, Sukanya Panja, et al.
Cancer Discovery (2021) Vol. 11, Iss. 9, pp. 2316-2333
Open Access | Times Cited: 35
Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers
Chia‐Lin Chen, Ching‐Yu Lin, Hsing‐Jien Kung
International Journal of Molecular Sciences (2021) Vol. 22, Iss. 24, pp. 13435-13435
Open Access | Times Cited: 33
Chia‐Lin Chen, Ching‐Yu Lin, Hsing‐Jien Kung
International Journal of Molecular Sciences (2021) Vol. 22, Iss. 24, pp. 13435-13435
Open Access | Times Cited: 33
Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer
Brittany P. Rickard, Marta Overchuk, Vesna A. Chappell, et al.
Cancers (2023) Vol. 15, Iss. 9, pp. 2564-2564
Open Access | Times Cited: 14
Brittany P. Rickard, Marta Overchuk, Vesna A. Chappell, et al.
Cancers (2023) Vol. 15, Iss. 9, pp. 2564-2564
Open Access | Times Cited: 14
Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer
Charles L. Bidgood, Lisa Philp, Anja Rockstroh, et al.
Cell Death and Disease (2024) Vol. 15, Iss. 7
Open Access | Times Cited: 6
Charles L. Bidgood, Lisa Philp, Anja Rockstroh, et al.
Cell Death and Disease (2024) Vol. 15, Iss. 7
Open Access | Times Cited: 6
Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer
Jean Nakhle, Anne‐Marie Rodriguez, Marie‐Luce Vignais
International Journal of Molecular Sciences (2020) Vol. 21, Iss. 12, pp. 4405-4405
Open Access | Times Cited: 38
Jean Nakhle, Anne‐Marie Rodriguez, Marie‐Luce Vignais
International Journal of Molecular Sciences (2020) Vol. 21, Iss. 12, pp. 4405-4405
Open Access | Times Cited: 38
Metabolic regulation of prostate cancer heterogeneity and plasticity
Claudia Peitzsch, Ielizaveta Gorodetska, Daria Klusa, et al.
Seminars in Cancer Biology (2020) Vol. 82, pp. 94-119
Closed Access | Times Cited: 36
Claudia Peitzsch, Ielizaveta Gorodetska, Daria Klusa, et al.
Seminars in Cancer Biology (2020) Vol. 82, pp. 94-119
Closed Access | Times Cited: 36
Mitochondrial DNA Dynamics in Reprogramming to Pluripotency
Alexander J. Sercel, Natasha M. Carlson, Alexander N. Patananan, et al.
Trends in Cell Biology (2021) Vol. 31, Iss. 4, pp. 311-323
Open Access | Times Cited: 28
Alexander J. Sercel, Natasha M. Carlson, Alexander N. Patananan, et al.
Trends in Cell Biology (2021) Vol. 31, Iss. 4, pp. 311-323
Open Access | Times Cited: 28