
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Massively parallel Cas13 screens reveal principles for guide RNA design
Hans‐Hermann Wessels, Alejandro Méndez‐Mancilla, Xinyi Guo, et al.
Nature Biotechnology (2020) Vol. 38, Iss. 6, pp. 722-727
Open Access | Times Cited: 333
Hans‐Hermann Wessels, Alejandro Méndez‐Mancilla, Xinyi Guo, et al.
Nature Biotechnology (2020) Vol. 38, Iss. 6, pp. 722-727
Open Access | Times Cited: 333
Showing 1-25 of 333 citing articles:
The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions
Rose Oughtred, Jennifer Rust, Christie Chang, et al.
Protein Science (2020) Vol. 30, Iss. 1, pp. 187-200
Open Access | Times Cited: 1221
Rose Oughtred, Jennifer Rust, Christie Chang, et al.
Protein Science (2020) Vol. 30, Iss. 1, pp. 187-200
Open Access | Times Cited: 1221
Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza
Timothy R. Abbott, Girija Dhamdhere, Yanxia Liu, et al.
Cell (2020) Vol. 181, Iss. 4, pp. 865-876.e12
Open Access | Times Cited: 434
Timothy R. Abbott, Girija Dhamdhere, Yanxia Liu, et al.
Cell (2020) Vol. 181, Iss. 4, pp. 865-876.e12
Open Access | Times Cited: 434
High-content CRISPR screening
Christoph Bock, Paul Datlinger, Florence M. Chardon, et al.
Nature Reviews Methods Primers (2022) Vol. 2, Iss. 1
Open Access | Times Cited: 371
Christoph Bock, Paul Datlinger, Florence M. Chardon, et al.
Nature Reviews Methods Primers (2022) Vol. 2, Iss. 1
Open Access | Times Cited: 371
CRISPR in cancer biology and therapy
Alyna Katti, Bianca J. Diaz, Christina M. Caragine, et al.
Nature reviews. Cancer (2022) Vol. 22, Iss. 5, pp. 259-279
Open Access | Times Cited: 291
Alyna Katti, Bianca J. Diaz, Christina M. Caragine, et al.
Nature reviews. Cancer (2022) Vol. 22, Iss. 5, pp. 259-279
Open Access | Times Cited: 291
High-content CRISPR screening
Christoph Bock, Paul Datlinger, Florence M. Chardon, et al.
Nature Reviews Methods Primers (2022) Vol. 2, Iss. 1
Open Access | Times Cited: 204
Christoph Bock, Paul Datlinger, Florence M. Chardon, et al.
Nature Reviews Methods Primers (2022) Vol. 2, Iss. 1
Open Access | Times Cited: 204
Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation
Joo‐Hyung Lee, Ruoyu Wang, Feng Xiong, et al.
Molecular Cell (2021) Vol. 81, Iss. 16, pp. 3368-3385.e9
Open Access | Times Cited: 201
Joo‐Hyung Lee, Ruoyu Wang, Feng Xiong, et al.
Molecular Cell (2021) Vol. 81, Iss. 16, pp. 3368-3385.e9
Open Access | Times Cited: 201
A new era in functional genomics screens
Laralynne Przybyla, Luke A. Gilbert
Nature Reviews Genetics (2021) Vol. 23, Iss. 2, pp. 89-103
Closed Access | Times Cited: 182
Laralynne Przybyla, Luke A. Gilbert
Nature Reviews Genetics (2021) Vol. 23, Iss. 2, pp. 89-103
Closed Access | Times Cited: 182
CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos
Gopal Kushawah, Luis Hernández-Huertas, Joaquín Abugattas-Núñez del Prado, et al.
Developmental Cell (2020) Vol. 54, Iss. 6, pp. 805-817.e7
Open Access | Times Cited: 180
Gopal Kushawah, Luis Hernández-Huertas, Joaquín Abugattas-Núñez del Prado, et al.
Developmental Cell (2020) Vol. 54, Iss. 6, pp. 805-817.e7
Open Access | Times Cited: 180
A genome-scale screen for synthetic drivers of T cell proliferation
Mateusz Legut, Zoran Gajic, Maria Guarino, et al.
Nature (2022) Vol. 603, Iss. 7902, pp. 728-735
Open Access | Times Cited: 137
Mateusz Legut, Zoran Gajic, Maria Guarino, et al.
Nature (2022) Vol. 603, Iss. 7902, pp. 728-735
Open Access | Times Cited: 137
Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9
Chunlei Jiao, Sahil Sharma, Gaurav Dugar, et al.
Science (2021) Vol. 372, Iss. 6545, pp. 941-948
Open Access | Times Cited: 117
Chunlei Jiao, Sahil Sharma, Gaurav Dugar, et al.
Science (2021) Vol. 372, Iss. 6545, pp. 941-948
Open Access | Times Cited: 117
Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens
John Morris, Christina M. Caragine, Zharko Daniloski, et al.
Science (2023) Vol. 380, Iss. 6646
Open Access | Times Cited: 110
John Morris, Christina M. Caragine, Zharko Daniloski, et al.
Science (2023) Vol. 380, Iss. 6646
Open Access | Times Cited: 110
CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells
Yuxi Ai, Dongming Liang, Jeremy E. Wilusz
Nucleic Acids Research (2022) Vol. 50, Iss. 11, pp. e65-e65
Open Access | Times Cited: 98
Yuxi Ai, Dongming Liang, Jeremy E. Wilusz
Nucleic Acids Research (2022) Vol. 50, Iss. 11, pp. e65-e65
Open Access | Times Cited: 98
Targeted gene silencing in the nervous system with CRISPR-Cas13
Jackson E. Powell, Colin K.W. Lim, Ramya Krishnan, et al.
Science Advances (2022) Vol. 8, Iss. 3
Open Access | Times Cited: 75
Jackson E. Powell, Colin K.W. Lim, Ramya Krishnan, et al.
Science Advances (2022) Vol. 8, Iss. 3
Open Access | Times Cited: 75
CRISPR technologies for genome, epigenome and transcriptome editing
Lukas Villiger, Julia Joung, Luke W. Koblan, et al.
Nature Reviews Molecular Cell Biology (2024) Vol. 25, Iss. 6, pp. 464-487
Closed Access | Times Cited: 73
Lukas Villiger, Julia Joung, Luke W. Koblan, et al.
Nature Reviews Molecular Cell Biology (2024) Vol. 25, Iss. 6, pp. 464-487
Closed Access | Times Cited: 73
Signal Amplification by the trans-Cleavage Activity of CRISPR-Cas Systems: Kinetics and Performance
Wei Feng, Hongquan Zhang, X. Chris Le
Analytical Chemistry (2023) Vol. 95, Iss. 1, pp. 206-217
Open Access | Times Cited: 61
Wei Feng, Hongquan Zhang, X. Chris Le
Analytical Chemistry (2023) Vol. 95, Iss. 1, pp. 206-217
Open Access | Times Cited: 61
Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning
Hans‐Hermann Wessels, Andrew Stirn, Alejandro Méndez‐Mancilla, et al.
Nature Biotechnology (2023) Vol. 42, Iss. 4, pp. 628-637
Closed Access | Times Cited: 56
Hans‐Hermann Wessels, Andrew Stirn, Alejandro Méndez‐Mancilla, et al.
Nature Biotechnology (2023) Vol. 42, Iss. 4, pp. 628-637
Closed Access | Times Cited: 56
Precise transcript targeting by CRISPR-Csm complexes
David Colognori, Marena Trinidad, Jennifer A. Doudna
Nature Biotechnology (2023) Vol. 41, Iss. 9, pp. 1256-1264
Open Access | Times Cited: 50
David Colognori, Marena Trinidad, Jennifer A. Doudna
Nature Biotechnology (2023) Vol. 41, Iss. 9, pp. 1256-1264
Open Access | Times Cited: 50
Collateral activity of the CRISPR/RfxCas13d system in human cells
Peiguo Shi, Michael R. Murphy, Alexis O. Aparicio, et al.
Communications Biology (2023) Vol. 6, Iss. 1
Open Access | Times Cited: 45
Peiguo Shi, Michael R. Murphy, Alexis O. Aparicio, et al.
Communications Biology (2023) Vol. 6, Iss. 1
Open Access | Times Cited: 45
A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells
Victor Tieu, Elena Sotillo, Jeremy Bjelajac, et al.
Cell (2024) Vol. 187, Iss. 5, pp. 1278-1295.e20
Closed Access | Times Cited: 41
Victor Tieu, Elena Sotillo, Jeremy Bjelajac, et al.
Cell (2024) Vol. 187, Iss. 5, pp. 1278-1295.e20
Closed Access | Times Cited: 41
Structures, mechanisms and applications of RNA-centric CRISPR–Cas13
Hui Yang, Dinshaw J. Patel
Nature Chemical Biology (2024) Vol. 20, Iss. 6, pp. 673-688
Closed Access | Times Cited: 26
Hui Yang, Dinshaw J. Patel
Nature Chemical Biology (2024) Vol. 20, Iss. 6, pp. 673-688
Closed Access | Times Cited: 26
Large-scale evaluation of the ability of RNA-binding proteins to activate exon inclusion
Jonathan C. Schmok, Manya Jain, Lena Annika Street, et al.
Nature Biotechnology (2024) Vol. 42, Iss. 9, pp. 1429-1441
Open Access | Times Cited: 19
Jonathan C. Schmok, Manya Jain, Lena Annika Street, et al.
Nature Biotechnology (2024) Vol. 42, Iss. 9, pp. 1429-1441
Open Access | Times Cited: 19
Nanoplatform‐Based In Vivo Gene Delivery Systems for Cancer Therapy
Rui Luo, Hao Le, Qinjie Wu, et al.
Small (2024) Vol. 20, Iss. 30
Closed Access | Times Cited: 17
Rui Luo, Hao Le, Qinjie Wu, et al.
Small (2024) Vol. 20, Iss. 30
Closed Access | Times Cited: 17
CRISPR/Cas12a-based biosensors for environmental monitoring and diagnostics
Atif Khurshid Wani, Nahid Akhtar, Tahir ul Gani Mir, et al.
Environmental Technology & Innovation (2024) Vol. 34, pp. 103625-103625
Open Access | Times Cited: 17
Atif Khurshid Wani, Nahid Akhtar, Tahir ul Gani Mir, et al.
Environmental Technology & Innovation (2024) Vol. 34, pp. 103625-103625
Open Access | Times Cited: 17
Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy
Feifei Zhang, Ryan D. Chow, Emily He, et al.
Nature Biotechnology (2025)
Closed Access | Times Cited: 4
Feifei Zhang, Ryan D. Chow, Emily He, et al.
Nature Biotechnology (2025)
Closed Access | Times Cited: 4
A high-fidelity CRISPR-Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD
Tristan X. McCallister, Colin K.W. Lim, Madhurima Singh, et al.
Nature Communications (2025) Vol. 16, Iss. 1
Open Access | Times Cited: 3
Tristan X. McCallister, Colin K.W. Lim, Madhurima Singh, et al.
Nature Communications (2025) Vol. 16, Iss. 1
Open Access | Times Cited: 3