
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Defining the carrier proteome limit for single-cell proteomics
Tommy K. Cheung, Chien‐Yun Lee, Florian Bayer, et al.
Nature Methods (2020) Vol. 18, Iss. 1, pp. 76-83
Closed Access | Times Cited: 202
Tommy K. Cheung, Chien‐Yun Lee, Florian Bayer, et al.
Nature Methods (2020) Vol. 18, Iss. 1, pp. 76-83
Closed Access | Times Cited: 202
Showing 1-25 of 202 citing articles:
Ultra‐high sensitivity mass spectrometry quantifies single‐cell proteome changes upon perturbation
Andreas‐David Brunner, Marvin Thielert, Catherine G. Vasilopoulou, et al.
Molecular Systems Biology (2022) Vol. 18, Iss. 3
Open Access | Times Cited: 415
Andreas‐David Brunner, Marvin Thielert, Catherine G. Vasilopoulou, et al.
Molecular Systems Biology (2022) Vol. 18, Iss. 3
Open Access | Times Cited: 415
Applications of single-cell sequencing in cancer research: progress and perspectives
Yalan Lei, Rong Tang, Jin Xu, et al.
Journal of Hematology & Oncology (2021) Vol. 14, Iss. 1
Open Access | Times Cited: 356
Yalan Lei, Rong Tang, Jin Xu, et al.
Journal of Hematology & Oncology (2021) Vol. 14, Iss. 1
Open Access | Times Cited: 356
Single-cell Proteomics: Progress and Prospects
Ryan Kelly
Molecular & Cellular Proteomics (2020) Vol. 19, Iss. 11, pp. 1739-1748
Open Access | Times Cited: 298
Ryan Kelly
Molecular & Cellular Proteomics (2020) Vol. 19, Iss. 11, pp. 1739-1748
Open Access | Times Cited: 298
Quantitative single-cell proteomics as a tool to characterize cellular hierarchies
Erwin M. Schoof, Benjamin Furtwängler, Nil Üresin, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 290
Erwin M. Schoof, Benjamin Furtwängler, Nil Üresin, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 290
Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell
Yongzheng Cong, Khatereh Motamedchaboki, Santosh A. Misal, et al.
Chemical Science (2020) Vol. 12, Iss. 3, pp. 1001-1006
Open Access | Times Cited: 209
Yongzheng Cong, Khatereh Motamedchaboki, Santosh A. Misal, et al.
Chemical Science (2020) Vol. 12, Iss. 3, pp. 1001-1006
Open Access | Times Cited: 209
High-throughput proteomics: a methodological mini-review
Miao Cui, Chao Cheng, Lanjing Zhang
Laboratory Investigation (2022) Vol. 102, Iss. 11, pp. 1170-1181
Open Access | Times Cited: 184
Miao Cui, Chao Cheng, Lanjing Zhang
Laboratory Investigation (2022) Vol. 102, Iss. 11, pp. 1170-1181
Open Access | Times Cited: 184
Multiplexed single-cell proteomics using SCoPE2
Aleksandra A. Petelski, Emily H Emmott, Andrew Leduc, et al.
Nature Protocols (2021) Vol. 16, Iss. 12, pp. 5398-5425
Open Access | Times Cited: 180
Aleksandra A. Petelski, Emily H Emmott, Andrew Leduc, et al.
Nature Protocols (2021) Vol. 16, Iss. 12, pp. 5398-5425
Open Access | Times Cited: 180
Single-cell proteomics enabled by next-generation sequencing or mass spectrometry
Hayley M. Bennett, William Stephenson, Christopher M. Rose, et al.
Nature Methods (2023) Vol. 20, Iss. 3, pp. 363-374
Closed Access | Times Cited: 178
Hayley M. Bennett, William Stephenson, Christopher M. Rose, et al.
Nature Methods (2023) Vol. 20, Iss. 3, pp. 363-374
Closed Access | Times Cited: 178
Unbiased spatial proteomics with single-cell resolution in tissues
Andreas Mund, Andreas‐David Brunner, Matthias Mann
Molecular Cell (2022) Vol. 82, Iss. 12, pp. 2335-2349
Open Access | Times Cited: 158
Andreas Mund, Andreas‐David Brunner, Matthias Mann
Molecular Cell (2022) Vol. 82, Iss. 12, pp. 2335-2349
Open Access | Times Cited: 158
High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip
Jongmin Jacob Woo, Sarah Williams, Lye Meng Markillie, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 136
Jongmin Jacob Woo, Sarah Williams, Lye Meng Markillie, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 136
Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments
Laurent Gatto, Ruedi Aebersold, Jüergen Cox, et al.
Nature Methods (2023) Vol. 20, Iss. 3, pp. 375-386
Open Access | Times Cited: 104
Laurent Gatto, Ruedi Aebersold, Jüergen Cox, et al.
Nature Methods (2023) Vol. 20, Iss. 3, pp. 375-386
Open Access | Times Cited: 104
Robust and Easy-to-Use One-Pot Workflow for Label-Free Single-Cell Proteomics
Manuel Matzinger, Elisabeth Müller, Gerhard Dürnberger, et al.
Analytical Chemistry (2023) Vol. 95, Iss. 9, pp. 4435-4445
Open Access | Times Cited: 87
Manuel Matzinger, Elisabeth Müller, Gerhard Dürnberger, et al.
Analytical Chemistry (2023) Vol. 95, Iss. 9, pp. 4435-4445
Open Access | Times Cited: 87
Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering
Jongmin Jacob Woo, Gérémy Clair, Sarah Williams, et al.
Cell Systems (2022) Vol. 13, Iss. 5, pp. 426-434.e4
Open Access | Times Cited: 72
Jongmin Jacob Woo, Gérémy Clair, Sarah Williams, et al.
Cell Systems (2022) Vol. 13, Iss. 5, pp. 426-434.e4
Open Access | Times Cited: 72
Real-Time Search-Assisted Acquisition on a Tribrid Mass Spectrometer Improves Coverage in Multiplexed Single-Cell Proteomics
Benjamin Furtwängler, Nil Üresin, Khatereh Motamedchaboki, et al.
Molecular & Cellular Proteomics (2022) Vol. 21, Iss. 4, pp. 100219-100219
Open Access | Times Cited: 72
Benjamin Furtwängler, Nil Üresin, Khatereh Motamedchaboki, et al.
Molecular & Cellular Proteomics (2022) Vol. 21, Iss. 4, pp. 100219-100219
Open Access | Times Cited: 72
An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity
Claudia Ctortecka, David Hartlmayr, Anjali Seth, et al.
Molecular & Cellular Proteomics (2023) Vol. 22, Iss. 12, pp. 100665-100665
Open Access | Times Cited: 68
Claudia Ctortecka, David Hartlmayr, Anjali Seth, et al.
Molecular & Cellular Proteomics (2023) Vol. 22, Iss. 12, pp. 100665-100665
Open Access | Times Cited: 68
Robust dimethyl‐based multiplex‐DIA doubles single‐cell proteome depth via a reference channel
Marvin Thielert, Corazon Ericka Mae M. Itang, Constantin Ammar, et al.
Molecular Systems Biology (2023) Vol. 19, Iss. 9
Open Access | Times Cited: 60
Marvin Thielert, Corazon Ericka Mae M. Itang, Constantin Ammar, et al.
Molecular Systems Biology (2023) Vol. 19, Iss. 9
Open Access | Times Cited: 60
Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition
Valdemaras Petrosius, Pedro Aragon-Fernandez, Nil Üresin, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 55
Valdemaras Petrosius, Pedro Aragon-Fernandez, Nil Üresin, et al.
Nature Communications (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 55
Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles
Paul Dowling, Stephen Gargan, Dieter Swandulla, et al.
International Journal of Molecular Sciences (2023) Vol. 24, Iss. 3, pp. 2415-2415
Open Access | Times Cited: 46
Paul Dowling, Stephen Gargan, Dieter Swandulla, et al.
International Journal of Molecular Sciences (2023) Vol. 24, Iss. 3, pp. 2415-2415
Open Access | Times Cited: 46
Mass spectrometry imaging: the rise of spatially resolved single-cell omics
Hua Zhang, Daniel G. Delafield, Lingjun Li
Nature Methods (2023) Vol. 20, Iss. 3, pp. 327-330
Closed Access | Times Cited: 42
Hua Zhang, Daniel G. Delafield, Lingjun Li
Nature Methods (2023) Vol. 20, Iss. 3, pp. 327-330
Closed Access | Times Cited: 42
Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications
Claudia Ctortecka, Natalie M. Clark, Brian Boyle, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 30
Claudia Ctortecka, Natalie M. Clark, Brian Boyle, et al.
Nature Communications (2024) Vol. 15, Iss. 1
Open Access | Times Cited: 30
Instrumentation at the Leading Edge of Proteomics
Trenton M. Peters-Clarke, Joshua J. Coon, Nicholas M. Riley
Analytical Chemistry (2024) Vol. 96, Iss. 20, pp. 7976-8010
Closed Access | Times Cited: 24
Trenton M. Peters-Clarke, Joshua J. Coon, Nicholas M. Riley
Analytical Chemistry (2024) Vol. 96, Iss. 20, pp. 7976-8010
Closed Access | Times Cited: 24
Enhanced sensitivity and scalability with a Chip-Tip workflow enables deep single-cell proteomics
Zilu Ye, Pierre Sabatier, Leander van der Hoeven, et al.
Nature Methods (2025)
Open Access | Times Cited: 7
Zilu Ye, Pierre Sabatier, Leander van der Hoeven, et al.
Nature Methods (2025)
Open Access | Times Cited: 7
Mass-spectrometry-based proteomics: from single cells to clinical applications
Tiannan Guo, Judith A. Steen, Matthias Mann
Nature (2025) Vol. 638, Iss. 8052, pp. 901-911
Closed Access | Times Cited: 3
Tiannan Guo, Judith A. Steen, Matthias Mann
Nature (2025) Vol. 638, Iss. 8052, pp. 901-911
Closed Access | Times Cited: 3
An automated workflow for multiplexed single-cell proteomics sample preparation at unprecedented sensitivity
Claudia Ctortecka, David Hartlmayr, Anjali Seth, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2021)
Open Access | Times Cited: 92
Claudia Ctortecka, David Hartlmayr, Anjali Seth, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2021)
Open Access | Times Cited: 92
Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation
Andreas‐David Brunner, Marvin Thielert, Catherine G. Vasilopoulou, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2020)
Open Access | Times Cited: 89
Andreas‐David Brunner, Marvin Thielert, Catherine G. Vasilopoulou, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2020)
Open Access | Times Cited: 89