
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence
Robert Lyle McPherson, Rachy Abraham, Easwaran Sreekumar, et al.
Proceedings of the National Academy of Sciences (2017) Vol. 114, Iss. 7, pp. 1666-1671
Open Access | Times Cited: 176
Robert Lyle McPherson, Rachy Abraham, Easwaran Sreekumar, et al.
Proceedings of the National Academy of Sciences (2017) Vol. 114, Iss. 7, pp. 1666-1671
Open Access | Times Cited: 176
Showing 1-25 of 176 citing articles:
Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein
Jian Lei, Yuri Kusov, Rolf Hilgenfeld
Antiviral Research (2017) Vol. 149, pp. 58-74
Open Access | Times Cited: 724
Jian Lei, Yuri Kusov, Rolf Hilgenfeld
Antiviral Research (2017) Vol. 149, pp. 58-74
Open Access | Times Cited: 724
ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease
Bernhard Lüscher, Mareike Bütepage, Laura Eckei, et al.
Chemical Reviews (2017) Vol. 118, Iss. 3, pp. 1092-1136
Closed Access | Times Cited: 223
Bernhard Lüscher, Mareike Bütepage, Laura Eckei, et al.
Chemical Reviews (2017) Vol. 118, Iss. 3, pp. 1092-1136
Closed Access | Times Cited: 223
The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression
Matthew Grunewald, Yating Chen, Chad V. Kuny, et al.
PLoS Pathogens (2019) Vol. 15, Iss. 5, pp. e1007756-e1007756
Open Access | Times Cited: 190
Matthew Grunewald, Yating Chen, Chad V. Kuny, et al.
PLoS Pathogens (2019) Vol. 15, Iss. 5, pp. e1007756-e1007756
Open Access | Times Cited: 190
The impact of PARPs and ADP-ribosylation on inflammation and host–pathogen interactions
Anthony R. Fehr, Sasha A. Singh, Catherine M. Kerr, et al.
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 341-359
Open Access | Times Cited: 188
Anthony R. Fehr, Sasha A. Singh, Catherine M. Kerr, et al.
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 341-359
Open Access | Times Cited: 188
(ADP-ribosyl)hydrolases: structure, function, and biology
J.G.M. Rack, Luca Palazzo, Ivan Ahel
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 263-284
Open Access | Times Cited: 159
J.G.M. Rack, Luca Palazzo, Ivan Ahel
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 263-284
Open Access | Times Cited: 159
Reversible ADP-ribosylation of RNA
Deeksha Munnur, Edward Bartlett, Petra Mikolčević, et al.
Nucleic Acids Research (2019) Vol. 47, Iss. 11, pp. 5658-5669
Open Access | Times Cited: 134
Deeksha Munnur, Edward Bartlett, Petra Mikolčević, et al.
Nucleic Acids Research (2019) Vol. 47, Iss. 11, pp. 5658-5669
Open Access | Times Cited: 134
Luca Palazzo, Andreja Mikoč, Ivan Ahel
FEBS Journal (2017) Vol. 284, Iss. 18, pp. 2932-2946
Open Access | Times Cited: 129
Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation
Anthony K. L. Leung
Trends in Cell Biology (2020) Vol. 30, Iss. 5, pp. 370-383
Open Access | Times Cited: 129
Anthony K. L. Leung
Trends in Cell Biology (2020) Vol. 30, Iss. 5, pp. 370-383
Open Access | Times Cited: 129
PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis
Dae-Seok Kim, Sridevi Challa, Aarin Jones, et al.
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 302-320
Open Access | Times Cited: 122
Dae-Seok Kim, Sridevi Challa, Aarin Jones, et al.
Genes & Development (2020) Vol. 34, Iss. 5-6, pp. 302-320
Open Access | Times Cited: 122
The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase
Yousef M. Alhammad, M.M. Kashipathy, Anuradha Roy, et al.
Journal of Virology (2020) Vol. 95, Iss. 3
Open Access | Times Cited: 121
Yousef M. Alhammad, M.M. Kashipathy, Anuradha Roy, et al.
Journal of Virology (2020) Vol. 95, Iss. 3
Open Access | Times Cited: 121
The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last
Benjamin Götte, Lifeng Liu, Gerald M. McInerney
Viruses (2018) Vol. 10, Iss. 3, pp. 105-105
Open Access | Times Cited: 120
Benjamin Götte, Lifeng Liu, Gerald M. McInerney
Viruses (2018) Vol. 10, Iss. 3, pp. 105-105
Open Access | Times Cited: 120
ADP-ribosyl–binding and hydrolase activities of the alphavirus nsP3 macrodomain are critical for initiation of virus replication
Rachy Abraham, Debra Hauer, Robert Lyle McPherson, et al.
Proceedings of the National Academy of Sciences (2018) Vol. 115, Iss. 44
Open Access | Times Cited: 119
Rachy Abraham, Debra Hauer, Robert Lyle McPherson, et al.
Proceedings of the National Academy of Sciences (2018) Vol. 115, Iss. 44
Open Access | Times Cited: 119
Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis
Anthony R. Fehr, Gytis Jankevicius, Ivan Ahel, et al.
Trends in Microbiology (2017) Vol. 26, Iss. 7, pp. 598-610
Open Access | Times Cited: 114
Anthony R. Fehr, Gytis Jankevicius, Ivan Ahel, et al.
Trends in Microbiology (2017) Vol. 26, Iss. 7, pp. 598-610
Open Access | Times Cited: 114
Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins
Bryan A. Gibson, Lesley B. Conrad, Dan Huang, et al.
Biochemistry (2017) Vol. 56, Iss. 48, pp. 6305-6316
Open Access | Times Cited: 113
Bryan A. Gibson, Lesley B. Conrad, Dan Huang, et al.
Biochemistry (2017) Vol. 56, Iss. 48, pp. 6305-6316
Open Access | Times Cited: 113
Molecular Basis for ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3
David N. Frick, Rajdeep S. Virdi, Nemanja Vuksanovic, et al.
Biochemistry (2020) Vol. 59, Iss. 28, pp. 2608-2615
Open Access | Times Cited: 113
David N. Frick, Rajdeep S. Virdi, Nemanja Vuksanovic, et al.
Biochemistry (2020) Vol. 59, Iss. 28, pp. 2608-2615
Open Access | Times Cited: 113
The Viral Macrodomain Counters Host Antiviral ADP-Ribosylation
Yousef M. Alhammad, Anthony R. Fehr
Viruses (2020) Vol. 12, Iss. 4, pp. 384-384
Open Access | Times Cited: 99
Yousef M. Alhammad, Anthony R. Fehr
Viruses (2020) Vol. 12, Iss. 4, pp. 384-384
Open Access | Times Cited: 99
ADP-ribosylation signalling and human disease
Luca Palazzo, Petra Mikolčević, Andreja Mikoč, et al.
Open Biology (2019) Vol. 9, Iss. 4
Open Access | Times Cited: 92
Luca Palazzo, Petra Mikolčević, Andreja Mikoč, et al.
Open Biology (2019) Vol. 9, Iss. 4
Open Access | Times Cited: 92
Specificity of reversible ADP-ribosylation and regulation of cellular processes
Kerryanne Crawford, Juán José Bonfiglio, Andreja Mikoč, et al.
Critical Reviews in Biochemistry and Molecular Biology (2017) Vol. 53, Iss. 1, pp. 64-82
Closed Access | Times Cited: 91
Kerryanne Crawford, Juán José Bonfiglio, Andreja Mikoč, et al.
Critical Reviews in Biochemistry and Molecular Biology (2017) Vol. 53, Iss. 1, pp. 64-82
Closed Access | Times Cited: 91
PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN–Inducible Proteins
Greta Caprara, Elena Prosperini, Viviana Piccolo, et al.
The Journal of Immunology (2018) Vol. 200, Iss. 7, pp. 2439-2454
Open Access | Times Cited: 87
Greta Caprara, Elena Prosperini, Viviana Piccolo, et al.
The Journal of Immunology (2018) Vol. 200, Iss. 7, pp. 2439-2454
Open Access | Times Cited: 87
A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening
Christoph Gorgulla, Krishna Mohan Das, Kendra E. Leigh, et al.
iScience (2021) Vol. 24, Iss. 2, pp. 102021-102021
Open Access | Times Cited: 86
Christoph Gorgulla, Krishna Mohan Das, Kendra E. Leigh, et al.
iScience (2021) Vol. 24, Iss. 2, pp. 102021-102021
Open Access | Times Cited: 86
IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity
Jean‐Pierre Levraud, Luc Jouneau, Valérie Briolat, et al.
The Journal of Immunology (2019) Vol. 203, Iss. 12, pp. 3361-3373
Open Access | Times Cited: 77
Jean‐Pierre Levraud, Luc Jouneau, Valérie Briolat, et al.
The Journal of Immunology (2019) Vol. 203, Iss. 12, pp. 3361-3373
Open Access | Times Cited: 77
Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential
J.G.M. Rack, Valentina Zorzini, Zihan Zhu, et al.
Open Biology (2020) Vol. 10, Iss. 11
Open Access | Times Cited: 77
J.G.M. Rack, Valentina Zorzini, Zihan Zhu, et al.
Open Biology (2020) Vol. 10, Iss. 11
Open Access | Times Cited: 77
Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity
Aravinth Kumar Jayabalan, Srivathsan Adivarahan, Aakash Koppula, et al.
Proceedings of the National Academy of Sciences (2021) Vol. 118, Iss. 6
Open Access | Times Cited: 73
Aravinth Kumar Jayabalan, Srivathsan Adivarahan, Aakash Koppula, et al.
Proceedings of the National Academy of Sciences (2021) Vol. 118, Iss. 6
Open Access | Times Cited: 73
ADP-ribosylation of RNA and DNA: fromin vitrocharacterization toin vivofunction
Lisa Weixler, Katja Schäringer, Jeffrey Momoh, et al.
Nucleic Acids Research (2021) Vol. 49, Iss. 7, pp. 3634-3650
Open Access | Times Cited: 68
Lisa Weixler, Katja Schäringer, Jeffrey Momoh, et al.
Nucleic Acids Research (2021) Vol. 49, Iss. 7, pp. 3634-3650
Open Access | Times Cited: 68
SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice
Yousef M. Alhammad, Srivatsan Parthasarathy, Roshan Ghimire, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 35
Open Access | Times Cited: 39
Yousef M. Alhammad, Srivatsan Parthasarathy, Roshan Ghimire, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 35
Open Access | Times Cited: 39