
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1
Arthur Fischbach, Annika Krüger, Stephanie Hampp, et al.
Nucleic Acids Research (2017) Vol. 46, Iss. 2, pp. 804-822
Open Access | Times Cited: 96
Arthur Fischbach, Annika Krüger, Stephanie Hampp, et al.
Nucleic Acids Research (2017) Vol. 46, Iss. 2, pp. 804-822
Open Access | Times Cited: 96
Showing 1-25 of 96 citing articles:
Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins
Elizaveta E. Alemasova, Olga I. Lavrik
Nucleic Acids Research (2019) Vol. 47, Iss. 8, pp. 3811-3827
Open Access | Times Cited: 387
Elizaveta E. Alemasova, Olga I. Lavrik
Nucleic Acids Research (2019) Vol. 47, Iss. 8, pp. 3811-3827
Open Access | Times Cited: 387
Activation of PARP-1 by snoRNAs Controls Ribosome Biogenesis and Cell Growth via the RNA Helicase DDX21
Dae-Seok Kim, Cristel V. Camacho, Anusha Nagari, et al.
Molecular Cell (2019) Vol. 75, Iss. 6, pp. 1270-1285.e14
Open Access | Times Cited: 214
Dae-Seok Kim, Cristel V. Camacho, Anusha Nagari, et al.
Molecular Cell (2019) Vol. 75, Iss. 6, pp. 1270-1285.e14
Open Access | Times Cited: 214
The expanding universe of PARP1-mediated molecular and therapeutic mechanisms
Dan Huang, W. Lee Kraus
Molecular Cell (2022) Vol. 82, Iss. 12, pp. 2315-2334
Open Access | Times Cited: 159
Dan Huang, W. Lee Kraus
Molecular Cell (2022) Vol. 82, Iss. 12, pp. 2315-2334
Open Access | Times Cited: 159
The role of PARP1 in neurodegenerative diseases and aging
Kanmin Mao, Guo Zhang
FEBS Journal (2021) Vol. 289, Iss. 8, pp. 2013-2024
Open Access | Times Cited: 114
Kanmin Mao, Guo Zhang
FEBS Journal (2021) Vol. 289, Iss. 8, pp. 2013-2024
Open Access | Times Cited: 114
p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways
Mikael S. Lindström, Jiří Bártek, Apolinar Maya‐Mendoza
Cell Death and Differentiation (2022) Vol. 29, Iss. 5, pp. 972-982
Open Access | Times Cited: 89
Mikael S. Lindström, Jiří Bártek, Apolinar Maya‐Mendoza
Cell Death and Differentiation (2022) Vol. 29, Iss. 5, pp. 972-982
Open Access | Times Cited: 89
Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation
Anthony K. L. Leung
Trends in Cell Biology (2020) Vol. 30, Iss. 5, pp. 370-383
Open Access | Times Cited: 130
Anthony K. L. Leung
Trends in Cell Biology (2020) Vol. 30, Iss. 5, pp. 370-383
Open Access | Times Cited: 130
The Role of PARPs in Inflammation—And Metabolic—Related Diseases: Molecular Mechanisms and Beyond
Yueshuang Ke, Chenxin Wang, Jiaqi Zhang, et al.
Cells (2019) Vol. 8, Iss. 9, pp. 1047-1047
Open Access | Times Cited: 100
Yueshuang Ke, Chenxin Wang, Jiaqi Zhang, et al.
Cells (2019) Vol. 8, Iss. 9, pp. 1047-1047
Open Access | Times Cited: 100
Targeting Intrinsically Disordered Transcription Factors: Changing the Paradigm
Kalliopi Tsafou, Purushottam B. Tiwari, Julie D. Forman‐Kay, et al.
Journal of Molecular Biology (2018) Vol. 430, Iss. 16, pp. 2321-2341
Closed Access | Times Cited: 98
Kalliopi Tsafou, Purushottam B. Tiwari, Julie D. Forman‐Kay, et al.
Journal of Molecular Biology (2018) Vol. 430, Iss. 16, pp. 2321-2341
Closed Access | Times Cited: 98
Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR spectroscopy
Annika Krüger, Alexander Bürkle, Karin Hauser, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 79
Annika Krüger, Alexander Bürkle, Karin Hauser, et al.
Nature Communications (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 79
Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) – Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy
Daniel Harrision, Polly Gravells, Ruth Thompson, et al.
Frontiers in Molecular Biosciences (2020) Vol. 7
Open Access | Times Cited: 75
Daniel Harrision, Polly Gravells, Ruth Thompson, et al.
Frontiers in Molecular Biosciences (2020) Vol. 7
Open Access | Times Cited: 75
Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity
YH Wang, Teresa L. Ho, Anushya Hariharan, et al.
Proceedings of the National Academy of Sciences (2022) Vol. 119, Iss. 10
Open Access | Times Cited: 68
YH Wang, Teresa L. Ho, Anushya Hariharan, et al.
Proceedings of the National Academy of Sciences (2022) Vol. 119, Iss. 10
Open Access | Times Cited: 68
Identifying Poly(ADP-ribose)-Binding Proteins with Photoaffinity-Based Proteomics
Morgan Dasovich, Morgan Q. Beckett, Scott Bailey, et al.
Journal of the American Chemical Society (2021) Vol. 143, Iss. 8, pp. 3037-3042
Open Access | Times Cited: 63
Morgan Dasovich, Morgan Q. Beckett, Scott Bailey, et al.
Journal of the American Chemical Society (2021) Vol. 143, Iss. 8, pp. 3037-3042
Open Access | Times Cited: 63
Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP
Yajie Chen, Qian Hao, Shanshan Wang, et al.
Proceedings of the National Academy of Sciences (2021) Vol. 118, Iss. 29
Open Access | Times Cited: 57
Yajie Chen, Qian Hao, Shanshan Wang, et al.
Proceedings of the National Academy of Sciences (2021) Vol. 118, Iss. 29
Open Access | Times Cited: 57
ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification
Élise Rouleau-Turcotte, John M. Pascal
Journal of Biological Chemistry (2023) Vol. 299, Iss. 12, pp. 105397-105397
Open Access | Times Cited: 25
Élise Rouleau-Turcotte, John M. Pascal
Journal of Biological Chemistry (2023) Vol. 299, Iss. 12, pp. 105397-105397
Open Access | Times Cited: 25
PARPs and ADP-ribosylation-mediated biomolecular condensates: determinants, dynamics, and disease implications
Hongrui Liu, Meenakshi Pillai, Anthony K. L. Leung
Trends in Biochemical Sciences (2025)
Closed Access | Times Cited: 1
Hongrui Liu, Meenakshi Pillai, Anthony K. L. Leung
Trends in Biochemical Sciences (2025)
Closed Access | Times Cited: 1
Gain-of-function mutant p53: history and speculation
Jill Bargonetti, Carol Prives
Journal of Molecular Cell Biology (2019) Vol. 11, Iss. 7, pp. 605-609
Open Access | Times Cited: 75
Jill Bargonetti, Carol Prives
Journal of Molecular Cell Biology (2019) Vol. 11, Iss. 7, pp. 605-609
Open Access | Times Cited: 75
Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer
Johann Gout, Lukas Perkhofer, Mareen Morawe, et al.
Gut (2020) Vol. 70, Iss. 4, pp. 743-760
Open Access | Times Cited: 62
Johann Gout, Lukas Perkhofer, Mareen Morawe, et al.
Gut (2020) Vol. 70, Iss. 4, pp. 743-760
Open Access | Times Cited: 62
Gain-of-Function Mutant p53 R273H Interacts with Replicating DNA and PARP1 in Breast Cancer
Gu Xiao, Devon Lundine, George K. Annor, et al.
Cancer Research (2019) Vol. 80, Iss. 3, pp. 394-405
Open Access | Times Cited: 61
Gu Xiao, Devon Lundine, George K. Annor, et al.
Cancer Research (2019) Vol. 80, Iss. 3, pp. 394-405
Open Access | Times Cited: 61
PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response
L. B. Aberle, Annika Krüger, Julia M. Reber, et al.
Nucleic Acids Research (2020) Vol. 48, Iss. 18, pp. 10015-10033
Open Access | Times Cited: 60
L. B. Aberle, Annika Krüger, Julia M. Reber, et al.
Nucleic Acids Research (2020) Vol. 48, Iss. 18, pp. 10015-10033
Open Access | Times Cited: 60
Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose)
Julia M. Reber, Aswin Mangerich
Nucleic Acids Research (2021) Vol. 49, Iss. 15, pp. 8432-8448
Open Access | Times Cited: 45
Julia M. Reber, Aswin Mangerich
Nucleic Acids Research (2021) Vol. 49, Iss. 15, pp. 8432-8448
Open Access | Times Cited: 45
Human PARP1 substrates and regulators of its catalytic activity: An updated overview
Tao Zhu, Juyan Zheng, Lingling Huang, et al.
Frontiers in Pharmacology (2023) Vol. 14
Open Access | Times Cited: 22
Tao Zhu, Juyan Zheng, Lingling Huang, et al.
Frontiers in Pharmacology (2023) Vol. 14
Open Access | Times Cited: 22
PAR recognition by PARP1 regulates DNA‐dependent activities and independently stimulates catalytic activity of PARP1
Waghela Deeksha, Suman Abhishek, Eerappa Rajakumara
FEBS Journal (2023) Vol. 290, Iss. 21, pp. 5098-5113
Open Access | Times Cited: 18
Waghela Deeksha, Suman Abhishek, Eerappa Rajakumara
FEBS Journal (2023) Vol. 290, Iss. 21, pp. 5098-5113
Open Access | Times Cited: 18
The role of truncated p53 isoforms in the DNA damage response
Luiza Steffens Reinhardt, Kira Groen, Cheryl Newton, et al.
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer (2023) Vol. 1878, Iss. 3, pp. 188882-188882
Open Access | Times Cited: 17
Luiza Steffens Reinhardt, Kira Groen, Cheryl Newton, et al.
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer (2023) Vol. 1878, Iss. 3, pp. 188882-188882
Open Access | Times Cited: 17
Formononetin alleviates cerebral ischemia-reperfusion injury in rats by targeting the PARP-1/PARG/Iduna signaling pathway
Jie Luo, Y. Cai, Dingling Wei, et al.
Brain Research (2024) Vol. 1829, pp. 148845-148845
Open Access | Times Cited: 6
Jie Luo, Y. Cai, Dingling Wei, et al.
Brain Research (2024) Vol. 1829, pp. 148845-148845
Open Access | Times Cited: 6
The Nucleolus and PARP1 in Cancer Biology
Marina Engbrecht, Aswin Mangerich
Cancers (2020) Vol. 12, Iss. 7, pp. 1813-1813
Open Access | Times Cited: 48
Marina Engbrecht, Aswin Mangerich
Cancers (2020) Vol. 12, Iss. 7, pp. 1813-1813
Open Access | Times Cited: 48