OpenAlex Citation Counts

OpenAlex Citations Logo

OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!

If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.

Requested Article:

Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential
J.G.M. Rack, Valentina Zorzini, Zihan Zhu, et al.
Open Biology (2020) Vol. 10, Iss. 11
Open Access | Times Cited: 77

Showing 1-25 of 77 citing articles:

Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking
M. Schuller, G.J. Correy, Stefan Gahbauer, et al.
Science Advances (2021) Vol. 7, Iss. 16
Open Access | Times Cited: 162

Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2
Stefan Gahbauer, G.J. Correy, M. Schuller, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 2
Open Access | Times Cited: 90

ADP-ribosylation from molecular mechanisms to therapeutic implications
Marcin J. Suskiewicz, Evgeniia Prokhorova, J.G.M. Rack, et al.
Cell (2023) Vol. 186, Iss. 21, pp. 4475-4495
Open Access | Times Cited: 75

The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling
Lilian C. Russo, Rebeka Tomasin, Isaac de Araújo Matos, et al.
Journal of Biological Chemistry (2021) Vol. 297, Iss. 3, pp. 101041-101041
Open Access | Times Cited: 97

The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome
Ivo A. Hendriks, Sara C. Buch-Larsen, Evgeniia Prokhorova, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 81

ADP-ribosylation of DNA and RNA
Joséphine Groslambert, Evgeniia Prokhorova, Ivan Ahel
DNA repair (2021) Vol. 105, pp. 103144-103144
Open Access | Times Cited: 80

DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates
Kang Zhu, Marcin J. Suskiewicz, Andrea Hloušek-Kasun, et al.
Science Advances (2022) Vol. 8, Iss. 40
Open Access | Times Cited: 67

SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice
Yousef M. Alhammad, Srivatsan Parthasarathy, Roshan Ghimire, et al.
Proceedings of the National Academy of Sciences (2023) Vol. 120, Iss. 35
Open Access | Times Cited: 39

PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities
N Mimica Dukic, Øyvind Strømland, Jonas D. Elsborg, et al.
Science Advances (2023) Vol. 9, Iss. 37
Open Access | Times Cited: 38

Updated protein domain annotation of the PARP protein family sheds new light on biological function
Marcin J. Suskiewicz, Deeksha Munnur, Øyvind Strømland, et al.
Nucleic Acids Research (2023) Vol. 51, Iss. 15, pp. 8217-8236
Open Access | Times Cited: 36

Chemoenzymatic and Synthetic Approaches To Investigate Aspartate- and Glutamate-ADP-Ribosylation
Kyuto Tashiro, Sven Wijngaarden, Jugal Mohapatra, et al.
Journal of the American Chemical Society (2023) Vol. 145, Iss. 25, pp. 14000-14009
Open Access | Times Cited: 25

PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation
Archimede Torretta, Constantinos Chatzicharalampous, Carmen Ebenwaldner, et al.
Journal of Biological Chemistry (2023) Vol. 299, Iss. 9, pp. 105096-105096
Open Access | Times Cited: 24

DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on nucleic acids
Kang Zhu, Marcin J. Suskiewicz, Chatrin Chatrin, et al.
Nucleic Acids Research (2023) Vol. 52, Iss. 2, pp. 801-815
Open Access | Times Cited: 24

PARP14 and PARP9/DTX3L regulate interferon-induced ADP-ribosylation
Pulak Kar, Chatrin Chatrin, N Mimica Dukic, et al.
The EMBO Journal (2024) Vol. 43, Iss. 14, pp. 2929-2953
Open Access | Times Cited: 16

PARP14 is regulated by the PARP9/DTX3L complex and promotes interferon γ-induced ADP-ribosylation
Victória Chaves Ribeiro, Lilian C. Russo, Nícolas C. Hoch
The EMBO Journal (2024) Vol. 43, Iss. 14, pp. 2908-2928
Open Access | Times Cited: 9

Targeting SARS-CoV-2 Nsp3 macrodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors
Chris A. Brosey, Jerry H. Houl, Panagiotis Katsonis, et al.
Progress in Biophysics and Molecular Biology (2021) Vol. 163, pp. 171-186
Open Access | Times Cited: 54

ADP-ribosylation systems in bacteria and viruses
Petra Mikolčević, Andrea Hloušek-Kasun, Ivan Ahel, et al.
Computational and Structural Biotechnology Journal (2021) Vol. 19, pp. 2366-2383
Open Access | Times Cited: 48

Exploring protein hotspots by optimized fragment pharmacophores
Dávid Bajusz, Warren S. Wade, Grzegorz Satała, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 46

Structural Insights into Plasticity and Discovery of Remdesivir Metabolite GS-441524 Binding in SARS-CoV-2 Macrodomain
Xiaomin Ni, Martin Schröder, Vincent Oliéric, et al.
ACS Medicinal Chemistry Letters (2021) Vol. 12, Iss. 4, pp. 603-609
Open Access | Times Cited: 44

High-Throughput Activity Assay for Screening Inhibitors of the SARS-CoV-2 Mac1 Macrodomain
Morgan Dasovich, Junlin Zhuo, Jack A. Goodman, et al.
ACS Chemical Biology (2021) Vol. 17, Iss. 1, pp. 17-23
Open Access | Times Cited: 42

The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature
G.J. Correy, Daniel W. Kneller, G.N. Phillips, et al.
Science Advances (2022) Vol. 8, Iss. 21
Open Access | Times Cited: 37

The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses
Anthony K. L. Leung, Diane E. Griffin, Jürgen Bosch, et al.
Pathogens (2022) Vol. 11, Iss. 1, pp. 94-94
Open Access | Times Cited: 32

A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo
Taha Y. Taha, Rahul K. Suryawanshi, Irene P. Chen, et al.
PLoS Pathogens (2023) Vol. 19, Iss. 8, pp. e1011614-e1011614
Open Access | Times Cited: 20

Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins
Sofia E. Delgado-Rodriguez, Andrew P. Ryan, Matthew D. Daugherty
Pathogens (2023) Vol. 12, Iss. 5, pp. 674-674
Open Access | Times Cited: 17

Mutation of a highly conserved isoleucine residue in loop 2 of several 𝛽-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental to infection
Catherine M. Kerr, Jessica J. Pfannenstiel, Yousef M. Alhammad, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2024)
Open Access | Times Cited: 6

Page 1 - Next Page

Scroll to top