
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Evidence for hormonal control of heart regenerative capacity during endothermy acquisition
Kentaro Hirose, Alexander Y. Payumo, Stephen Cutie, et al.
Science (2019) Vol. 364, Iss. 6436, pp. 184-188
Open Access | Times Cited: 306
Kentaro Hirose, Alexander Y. Payumo, Stephen Cutie, et al.
Science (2019) Vol. 364, Iss. 6436, pp. 184-188
Open Access | Times Cited: 306
Showing 1-25 of 306 citing articles:
Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine
Elaheh Karbassi, Aidan M. Fenix, Silvia Marchianò, et al.
Nature Reviews Cardiology (2020) Vol. 17, Iss. 6, pp. 341-359
Open Access | Times Cited: 582
Elaheh Karbassi, Aidan M. Fenix, Silvia Marchianò, et al.
Nature Reviews Cardiology (2020) Vol. 17, Iss. 6, pp. 341-359
Open Access | Times Cited: 582
Cardiomyocyte Maturation
Yuxuan Guo, William T. Pu
Circulation Research (2020) Vol. 126, Iss. 8, pp. 1086-1106
Open Access | Times Cited: 480
Yuxuan Guo, William T. Pu
Circulation Research (2020) Vol. 126, Iss. 8, pp. 1086-1106
Open Access | Times Cited: 480
Polyploidy in Cardiomyocytes
Wouter Derks, Olaf Bergmann
Circulation Research (2020) Vol. 126, Iss. 4, pp. 552-565
Open Access | Times Cited: 158
Wouter Derks, Olaf Bergmann
Circulation Research (2020) Vol. 126, Iss. 4, pp. 552-565
Open Access | Times Cited: 158
Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells
Shunsuke Funakoshi, Ian Fernandes, Olya Mastikhina, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 118
Shunsuke Funakoshi, Ian Fernandes, Olya Mastikhina, et al.
Nature Communications (2021) Vol. 12, Iss. 1
Open Access | Times Cited: 118
Takotsubo syndrome is a coronary microvascular disease: experimental evidence
Feng Dong, Liya Yin, Hamayak Sisakian, et al.
European Heart Journal (2023) Vol. 44, Iss. 24, pp. 2244-2253
Open Access | Times Cited: 50
Feng Dong, Liya Yin, Hamayak Sisakian, et al.
European Heart Journal (2023) Vol. 44, Iss. 24, pp. 2244-2253
Open Access | Times Cited: 50
Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction
Axelle Bois, Catarina Grandela, James Gallant, et al.
npj Regenerative Medicine (2025) Vol. 10, Iss. 1
Open Access | Times Cited: 2
Axelle Bois, Catarina Grandela, James Gallant, et al.
npj Regenerative Medicine (2025) Vol. 10, Iss. 1
Open Access | Times Cited: 2
Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution
Zhaoning Wang, Miao Cui, Akansha M. Shah, et al.
Cell Reports (2020) Vol. 33, Iss. 10, pp. 108472-108472
Open Access | Times Cited: 136
Zhaoning Wang, Miao Cui, Akansha M. Shah, et al.
Cell Reports (2020) Vol. 33, Iss. 10, pp. 108472-108472
Open Access | Times Cited: 136
Gene regulatory programmes of tissue regeneration
Joseph Goldman, Kenneth D. Poss
Nature Reviews Genetics (2020) Vol. 21, Iss. 9, pp. 511-525
Open Access | Times Cited: 135
Joseph Goldman, Kenneth D. Poss
Nature Reviews Genetics (2020) Vol. 21, Iss. 9, pp. 511-525
Open Access | Times Cited: 135
Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation
Lingjuan He, Ngoc B. Nguyen, Reza Ardehali, et al.
Circulation (2020) Vol. 142, Iss. 3, pp. 275-291
Open Access | Times Cited: 116
Lingjuan He, Ngoc B. Nguyen, Reza Ardehali, et al.
Circulation (2020) Vol. 142, Iss. 3, pp. 275-291
Open Access | Times Cited: 116
Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction
Rui Guo, Masatoshi Morimatsu, Feng Tian, et al.
Stem Cell Research & Therapy (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 101
Rui Guo, Masatoshi Morimatsu, Feng Tian, et al.
Stem Cell Research & Therapy (2020) Vol. 11, Iss. 1
Open Access | Times Cited: 101
Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment
Honghai Liu, Cheng–Hai Zhang, Niyatie Ammanamanchi, et al.
Science Translational Medicine (2019) Vol. 11, Iss. 513
Open Access | Times Cited: 96
Honghai Liu, Cheng–Hai Zhang, Niyatie Ammanamanchi, et al.
Science Translational Medicine (2019) Vol. 11, Iss. 513
Open Access | Times Cited: 96
Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration
Lu Han, Sangita Choudhury, Jocelyn D. Mich-Basso, et al.
Developmental Cell (2020) Vol. 53, Iss. 1, pp. 42-59.e11
Open Access | Times Cited: 79
Lu Han, Sangita Choudhury, Jocelyn D. Mich-Basso, et al.
Developmental Cell (2020) Vol. 53, Iss. 1, pp. 42-59.e11
Open Access | Times Cited: 79
Non-coding RNA therapeutics for cardiac regeneration
Luca Braga, Hashim Ali, Ilaria Secco, et al.
Cardiovascular Research (2020) Vol. 117, Iss. 3, pp. 674-693
Open Access | Times Cited: 79
Luca Braga, Hashim Ali, Ilaria Secco, et al.
Cardiovascular Research (2020) Vol. 117, Iss. 3, pp. 674-693
Open Access | Times Cited: 79
Cardiomyocyte Polyploidy and Implications for Heart Regeneration
Peiheng Gan, Michaela Patterson, Henry M. Sucov
Annual Review of Physiology (2019) Vol. 82, Iss. 1, pp. 45-61
Closed Access | Times Cited: 77
Peiheng Gan, Michaela Patterson, Henry M. Sucov
Annual Review of Physiology (2019) Vol. 82, Iss. 1, pp. 45-61
Closed Access | Times Cited: 77
Mydgf promotes Cardiomyocyte proliferation and Neonatal Heart regeneration
Yuyao Wang, Yan Li, Jie Feng, et al.
Theranostics (2020) Vol. 10, Iss. 20, pp. 9100-9112
Open Access | Times Cited: 73
Yuyao Wang, Yan Li, Jie Feng, et al.
Theranostics (2020) Vol. 10, Iss. 20, pp. 9100-9112
Open Access | Times Cited: 73
Thyroid Hormone Plays an Important Role in Cardiac Function: From Bench to Bedside
Hiroyuki Yamakawa, Tomoko S. Kato, Jaeduk Yoshimura Noh, et al.
Frontiers in Physiology (2021) Vol. 12
Open Access | Times Cited: 70
Hiroyuki Yamakawa, Tomoko S. Kato, Jaeduk Yoshimura Noh, et al.
Frontiers in Physiology (2021) Vol. 12
Open Access | Times Cited: 70
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing
Moran Yadid, Hadas Oved, Eric Silberman, et al.
Nature Reviews Cardiology (2021) Vol. 19, Iss. 2, pp. 83-99
Closed Access | Times Cited: 68
Moran Yadid, Hadas Oved, Eric Silberman, et al.
Nature Reviews Cardiology (2021) Vol. 19, Iss. 2, pp. 83-99
Closed Access | Times Cited: 68
Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development
Zening Li, Jianan Hui, P. Yang, et al.
Biosensors (2022) Vol. 12, Iss. 6, pp. 370-370
Open Access | Times Cited: 63
Zening Li, Jianan Hui, P. Yang, et al.
Biosensors (2022) Vol. 12, Iss. 6, pp. 370-370
Open Access | Times Cited: 63
Heart regeneration: 20 years of progress and renewed optimism
Jessica C. Garbern, Richard Lee
Developmental Cell (2022) Vol. 57, Iss. 4, pp. 424-439
Open Access | Times Cited: 61
Jessica C. Garbern, Richard Lee
Developmental Cell (2022) Vol. 57, Iss. 4, pp. 424-439
Open Access | Times Cited: 61
Zebrafish Models of Cardiac Disease: From Fortuitous Mutants to Precision Medicine
Juan Manuel González‐Rosa
Circulation Research (2022) Vol. 130, Iss. 12, pp. 1803-1826
Open Access | Times Cited: 58
Juan Manuel González‐Rosa
Circulation Research (2022) Vol. 130, Iss. 12, pp. 1803-1826
Open Access | Times Cited: 58
RBPMS is an RNA-binding protein that mediates cardiomyocyte binucleation and cardiovascular development
Peiheng Gan, Zhaoning Wang, María Gabriela Morales, et al.
Developmental Cell (2022) Vol. 57, Iss. 8, pp. 959-973.e7
Open Access | Times Cited: 53
Peiheng Gan, Zhaoning Wang, María Gabriela Morales, et al.
Developmental Cell (2022) Vol. 57, Iss. 8, pp. 959-973.e7
Open Access | Times Cited: 53
Evolutionarily divergent mTOR remodels translatome for tissue regeneration
Olena Zhulyn, Hannah D. Rosenblatt, Leila Shokat, et al.
Nature (2023) Vol. 620, Iss. 7972, pp. 163-171
Closed Access | Times Cited: 34
Olena Zhulyn, Hannah D. Rosenblatt, Leila Shokat, et al.
Nature (2023) Vol. 620, Iss. 7972, pp. 163-171
Closed Access | Times Cited: 34
Ultrafast distant wound response is essential for whole-body regeneration
Yuhang Fan, Chew Chai, Pengyang Li, et al.
Cell (2023) Vol. 186, Iss. 17, pp. 3606-3618.e16
Open Access | Times Cited: 30
Yuhang Fan, Chew Chai, Pengyang Li, et al.
Cell (2023) Vol. 186, Iss. 17, pp. 3606-3618.e16
Open Access | Times Cited: 30
Cardiomyocyte ploidy is dynamic during postnatal development and varies across genetic backgrounds
Samantha Swift, Alexandra L. Purdy, Mary E. Kolell, et al.
Development (2023) Vol. 150, Iss. 7
Open Access | Times Cited: 27
Samantha Swift, Alexandra L. Purdy, Mary E. Kolell, et al.
Development (2023) Vol. 150, Iss. 7
Open Access | Times Cited: 27
BMP7 promotes cardiomyocyte regeneration in zebrafish and adult mice
Chiara Bongiovanni, Hanna Bueno-Levy, Denise Posadas Pena, et al.
Cell Reports (2024) Vol. 43, Iss. 5, pp. 114162-114162
Open Access | Times Cited: 15
Chiara Bongiovanni, Hanna Bueno-Levy, Denise Posadas Pena, et al.
Cell Reports (2024) Vol. 43, Iss. 5, pp. 114162-114162
Open Access | Times Cited: 15