
OpenAlex is a bibliographic catalogue of scientific papers, authors and institutions accessible in open access mode, named after the Library of Alexandria. It's citation coverage is excellent and I hope you will find utility in this listing of citing articles!
If you click the article title, you'll navigate to the article, as listed in CrossRef. If you click the Open Access links, you'll navigate to the "best Open Access location". Clicking the citation count will open this listing for that article. Lastly at the bottom of the page, you'll find basic pagination options.
Requested Article:
Comprehensive fitness landscape of SARS-CoV-2 Mpro reveals insights into viral resistance mechanisms
Julia M. Flynn, Neha S. Samant, Gily Schneider-Nachum, et al.
eLife (2022) Vol. 11
Open Access | Times Cited: 98
Julia M. Flynn, Neha S. Samant, Gily Schneider-Nachum, et al.
eLife (2022) Vol. 11
Open Access | Times Cited: 98
Showing 1-25 of 98 citing articles:
Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir
Yanmei Hu, Eric M. Lewandowski, Haozhou Tan, et al.
ACS Central Science (2023) Vol. 9, Iss. 8, pp. 1658-1669
Open Access | Times Cited: 220
Yanmei Hu, Eric M. Lewandowski, Haozhou Tan, et al.
ACS Central Science (2023) Vol. 9, Iss. 8, pp. 1658-1669
Open Access | Times Cited: 220
Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system
Yuyong Zhou, Karen Anbro Gammeltoft, Line A. Ryberg, et al.
Science Advances (2022) Vol. 8, Iss. 51
Open Access | Times Cited: 175
Yuyong Zhou, Karen Anbro Gammeltoft, Line A. Ryberg, et al.
Science Advances (2022) Vol. 8, Iss. 51
Open Access | Times Cited: 175
The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir
Dirk Jochmans, Liu C, Kim Donckers, et al.
mBio (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 134
Dirk Jochmans, Liu C, Kim Donckers, et al.
mBio (2023) Vol. 14, Iss. 1
Open Access | Times Cited: 134
Accelerating antiviral drug discovery: lessons from COVID-19
Annette von Delft, Matthew D. Hall, Ann D. Kwong, et al.
Nature Reviews Drug Discovery (2023) Vol. 22, Iss. 7, pp. 585-603
Open Access | Times Cited: 100
Annette von Delft, Matthew D. Hall, Ann D. Kwong, et al.
Nature Reviews Drug Discovery (2023) Vol. 22, Iss. 7, pp. 585-603
Open Access | Times Cited: 100
Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance
Ala M. Shaqra, Sarah N. Zvornicanin, Qiu Yu J. Huang, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 99
Ala M. Shaqra, Sarah N. Zvornicanin, Qiu Yu J. Huang, et al.
Nature Communications (2022) Vol. 13, Iss. 1
Open Access | Times Cited: 99
ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness Prediction
Pascal Notin, Aaron W. Kollasch, Daniel P. Ritter, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 98
Pascal Notin, Aaron W. Kollasch, Daniel P. Ritter, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 98
Learning from prepandemic data to forecast viral escape
Nicole N. Thadani, Sarah F. Gurev, Pascal Notin, et al.
Nature (2023) Vol. 622, Iss. 7984, pp. 818-825
Open Access | Times Cited: 83
Nicole N. Thadani, Sarah F. Gurev, Pascal Notin, et al.
Nature (2023) Vol. 622, Iss. 7984, pp. 818-825
Open Access | Times Cited: 83
Fitness effects of mutations to SARS-CoV-2 proteins
Jesse D. Bloom, Richard A. Neher
Virus Evolution (2023) Vol. 9, Iss. 2
Open Access | Times Cited: 77
Jesse D. Bloom, Richard A. Neher
Virus Evolution (2023) Vol. 9, Iss. 2
Open Access | Times Cited: 77
Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites
Sho Iketani, Seo Jung Hong, Jenny Sheng, et al.
Cell Host & Microbe (2022) Vol. 30, Iss. 10, pp. 1354-1362.e6
Open Access | Times Cited: 50
Sho Iketani, Seo Jung Hong, Jenny Sheng, et al.
Cell Host & Microbe (2022) Vol. 30, Iss. 10, pp. 1354-1362.e6
Open Access | Times Cited: 50
The substitutions L50F, E166A and L167F in SARS-CoV-2 3CLpro are selected by a protease inhibitorin vitroand confer resistance to nirmatrelvir
Dirk Jochmans, Liu C, Kim Donckers, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2022)
Open Access | Times Cited: 42
Dirk Jochmans, Liu C, Kim Donckers, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2022)
Open Access | Times Cited: 42
Fitness effects of mutations to SARS-CoV-2 proteins
Jesse D. Bloom, Richard A. Neher
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 32
Jesse D. Bloom, Richard A. Neher
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 32
Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease
H. T. Henry Chan, A. Sofia F. Oliveira, Christopher J. Schofield, et al.
JACS Au (2023) Vol. 3, Iss. 6, pp. 1767-1774
Open Access | Times Cited: 30
H. T. Henry Chan, A. Sofia F. Oliveira, Christopher J. Schofield, et al.
JACS Au (2023) Vol. 3, Iss. 6, pp. 1767-1774
Open Access | Times Cited: 30
Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery–Genetics Alliance Perspective
Cecilia Pozzi, Anne Vanet, Valeria Francesconi, et al.
Journal of Medicinal Chemistry (2023) Vol. 66, Iss. 6, pp. 3664-3702
Open Access | Times Cited: 28
Cecilia Pozzi, Anne Vanet, Valeria Francesconi, et al.
Journal of Medicinal Chemistry (2023) Vol. 66, Iss. 6, pp. 3664-3702
Open Access | Times Cited: 28
Systematic Analyses of the Resistance Potential of Drugs Targeting SARS-CoV-2 Main Protease
Julia M. Flynn, Qiu Yu J. Huang, Sarah N. Zvornicanin, et al.
ACS Infectious Diseases (2023) Vol. 9, Iss. 7, pp. 1372-1386
Open Access | Times Cited: 26
Julia M. Flynn, Qiu Yu J. Huang, Sarah N. Zvornicanin, et al.
ACS Infectious Diseases (2023) Vol. 9, Iss. 7, pp. 1372-1386
Open Access | Times Cited: 26
A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations
Jin Ou, Eric M. Lewandowski, Yanmei Hu, et al.
PLoS Pathogens (2023) Vol. 19, Iss. 8, pp. e1011592-e1011592
Open Access | Times Cited: 25
Jin Ou, Eric M. Lewandowski, Yanmei Hu, et al.
PLoS Pathogens (2023) Vol. 19, Iss. 8, pp. e1011592-e1011592
Open Access | Times Cited: 25
Large library docking for novel SARS‐CoV ‐2 main protease non‐covalent and covalent inhibitors
Elissa A. Fink, Conner Bardine, Stefan Gahbauer, et al.
Protein Science (2023) Vol. 32, Iss. 8
Open Access | Times Cited: 24
Elissa A. Fink, Conner Bardine, Stefan Gahbauer, et al.
Protein Science (2023) Vol. 32, Iss. 8
Open Access | Times Cited: 24
An orally bioavailable SARS-CoV-2 main protease inhibitor exhibits improved affinity and reduced sensitivity to mutations
Michael Westberg, Yichi Su, Xinzhi Zou, et al.
Science Translational Medicine (2024) Vol. 16, Iss. 738
Open Access | Times Cited: 14
Michael Westberg, Yichi Su, Xinzhi Zou, et al.
Science Translational Medicine (2024) Vol. 16, Iss. 738
Open Access | Times Cited: 14
SARS-CoV-2 resistance to monoclonal antibodies and small-molecule drugs
Sho Iketani, David D. Ho
Cell chemical biology (2024) Vol. 31, Iss. 4, pp. 632-657
Open Access | Times Cited: 13
Sho Iketani, David D. Ho
Cell chemical biology (2024) Vol. 31, Iss. 4, pp. 632-657
Open Access | Times Cited: 13
Contributions of Hyperactive Mutations in Mpro from SARS-CoV-2 to Drug Resistance
Julia M. Flynn, Sarah N. Zvornicanin, Tenzin Tsepal, et al.
ACS Infectious Diseases (2024) Vol. 10, Iss. 4, pp. 1174-1184
Closed Access | Times Cited: 9
Julia M. Flynn, Sarah N. Zvornicanin, Tenzin Tsepal, et al.
ACS Infectious Diseases (2024) Vol. 10, Iss. 4, pp. 1174-1184
Closed Access | Times Cited: 9
Rugged fitness landscapes minimize promiscuity in the evolution of transcriptional repressors
Anthony Meger, Matthew A. Spence, Mahakaran Sandhu, et al.
Cell Systems (2024) Vol. 15, Iss. 4, pp. 374-387.e6
Open Access | Times Cited: 9
Anthony Meger, Matthew A. Spence, Mahakaran Sandhu, et al.
Cell Systems (2024) Vol. 15, Iss. 4, pp. 374-387.e6
Open Access | Times Cited: 9
Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2
Jessica Wagoner, Shawn Herring, Tien-Ying Hsiang, et al.
Microbiology Spectrum (2022) Vol. 10, Iss. 5
Open Access | Times Cited: 37
Jessica Wagoner, Shawn Herring, Tien-Ying Hsiang, et al.
Microbiology Spectrum (2022) Vol. 10, Iss. 5
Open Access | Times Cited: 37
Nirmatrelvir Resistance in SARS-CoV-2 Omicron_BA.1 and WA1 Replicons and Escape Strategies
Shuiyun Lan, Grace Neilsen, Ryan L. Slack, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 22
Shuiyun Lan, Grace Neilsen, Ryan L. Slack, et al.
bioRxiv (Cold Spring Harbor Laboratory) (2023)
Open Access | Times Cited: 22
Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 Mpro inhibitors
Letian Song, Shenghua Gao, Bing Ye, et al.
Acta Pharmaceutica Sinica B (2023) Vol. 14, Iss. 1, pp. 87-109
Open Access | Times Cited: 21
Letian Song, Shenghua Gao, Bing Ye, et al.
Acta Pharmaceutica Sinica B (2023) Vol. 14, Iss. 1, pp. 87-109
Open Access | Times Cited: 21
Developing an appropriate evolutionary baseline model for the study of SARS-CoV-2 patient samples
John W. Terbot, Parul Johri, Schuyler Liphardt, et al.
PLoS Pathogens (2023) Vol. 19, Iss. 4, pp. e1011265-e1011265
Open Access | Times Cited: 18
John W. Terbot, Parul Johri, Schuyler Liphardt, et al.
PLoS Pathogens (2023) Vol. 19, Iss. 4, pp. e1011265-e1011265
Open Access | Times Cited: 18